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Abstract

This paper introduces a geometrically inspired
large-margin classifier that can be a better alternative
to the Support Vector Machines (SVMs) for the classi-
fication problems with limited number of training sam-
ples. In contrast to the SVM classifier, we approximate
classes with affine hulls of their class samples rather
than convex hulls, which may be unrealistically tight in
high-dimensional spaces. To find the best separating
hyperplane between any pair of classes approximated
with the affine hulls, we first compute the closest points
on the affine hulls and connect these two points with
a line segment. The optimal separating hyperplane is
chosen to be the hyperplane that is orthogonal to the
line segment and bisects the line. To allow soft margin
solutions, we first reduce affine hulls in order to allevi-
ate the effects of outliers and then search for the best
separating hyperplane between these reduced models.
Multi-class classification problems are dealt with con-
structing and combining several binary classifiers as in
SVM. The experiments on several databases show that
the proposed method compares favorably with the SVM
classifier.

1. Introduction

The Support Vector Machine (SVM) classifier is a
successful binary classification method that simultane-
ously minimizes the empirical classification error and
maximizes the geometric margin, which is defined as
the distance between the separating hyperplane and
closest samples from the classes [5,2]. To do so, SVM
first approximates each class with a convex hull and
finds the closest points in these convex hulls [1]. Then,
these two points are connected with a line segment. The
hyperplane, orthogonal to the line segment that bisects
the line, is chosen to be the separating hyperplane [1].
From this geometrical point of view, in the separable
case, the two closest points on the convex hulls deter-

mine the separating hyperplane, and the SVM margin is
merely equivalent to the minimum distance between the
convex hulls that represent classes. However, convex
hull approximations tend to be unrealistically tight in
high-dimensional spaces since the classes typically ex-
tend beyond the convex hulls of their training samples.
For example, a convex hull constructed by randomly
sampled points from a high-dimensional hypersphere
can include only a negligible fraction of the volume of
the sphere even if the chosen samples are well spaced
and close to the surface of the sphere [4]. This situa-
tion may also be observed when the low-dimensional
data samples are mapped to a higher-dimensional fea-
ture space through kernel mapping during estimation of
the nonlinear decision boundaries between classes.

As opposed to the convex hulls, affine hulls (i.e.,
spanning linear subspaces that have been shifted to pass
through the centroids of the classes) give rather loose
approximations to the class regions, because they do not
constrain the positions of the training points within the
affine subspaces. Therefore, they may be better alter-
natives to convex hulls for some pattern classification
problems especially when the data samples lie in high-
dimensional spaces [3]. This paper introduces a new
large margin classifier that is based on explicitly build-
ing maximum margin separators between pairs of affine
hulls.

2 Method

Consider a binary classification problem with the
training data given in the form {xi, yi}, i = 1, ..., n,
yi ∈ {−1,+1}, xi ∈ IRd. The proposed method be-
gins by approximating each class (positive and negative
classes) with an affine hull of its training samples. An
affine hull of a class is the smallest affine subspace con-
taining them. This is an unbounded, and hence typi-
cally rather loose model for each class. The affine hull
of samples {xi}i=1,...,n contains all points of the form∑n
i=1 αixi with

∑n
i=1 αi = 1. More formally affine

hull of a class with samples {xi}i=1,...,n can be written



as

Haff =

{
x =

n∑
i=1

αixi |
n∑
i=1

αi = 1

}
. (1)

Our goal is to find the maximum margin linear sep-
arating hyperplane between affine hulls of classes. The
points x which lie on the separating hyperplane satisfy
〈w,x〉+b = 0, where w is the normal of the separating
hyperplane, |b|/||w|| is the perpendicular distance from
the hyperplane to the origin, and ||w|| is the Euclidean
norm of w. For any separating hyperplane, all points
xi in the positive class satisfy 〈w,xi〉 + b > 0 and all
points xi in the negative class satisfy 〈w,xi〉 + b < 0
so that yi(〈w,xi〉 + b) > 0 for all training data points.
Finding the best separating hyperplane problem can be
solved by computing the closest points on the affine
hulls. The optimal separating hyperplane will be the
one that bisects perpendicularly the line segment con-
necting the closest points. The offset (also called thresh-
old), b, can be chosen as the distance from the origin to
the point halfway between the closest points along the
normal w. Once the best separating hyperplane is de-
termined, a new sample x is classified based on the sign
of the decision function, f(x) = 〈w,x〉+ b.

Next, we will first show how to find the best separat-
ing hyperlane for linearly separable affine hulls and then
extend the idea for inseparable case. Then, we explain
kernelization process.

2.1 Linearly Separable Case

Suppose that affine hulls belonging to the positive
and negative classes are linearly separable. The affine
hulls of two classes do not intersect, i.e., they are lin-
early separable, if the affine combinations of their sam-
ples satisfy the rule∑
i:yi=+1

αixi 6=
∑

j:yj=−1

αjxjfor
∑

i:yi=+1

αi =
∑

j:yj=−1

αj = 1.

(2)
It should be noted that linear separability of data points
does not necessarily guarantee the separability of corre-
sponding affine hulls of classes. For linearly separable
case, it is more convenient to write an affine hulls as

Haff = {x = Uv + µ |v ∈ IRl}, (3)

where µ = (1/n)
∑
i xi is the mean of the samples (or

any other reference point in the hull) and U is an or-
thonormal basis for the directions spanned by the affine
subspace. The vector v contains the reduced coordi-
nates of the point within the subspace, expressed with
respect to the basis U. Numerically, U can be found

as the U-matrix of the ‘thin’ Singular Value Decompo-
sition (SVD) of [x1 − µ, ...,xn − µ]. Here, ‘thin’ in-
dicates that we take only the columns of U correspond-
ing to “significantly non-zero” singular values λk; l is
the number of such non-zero singular values. This sub-
space estimation process is essentially orthogonal least
squares fitting. Discarding near-zero singular values
corresponds to discarding directions that appear to be
predominantly “noise”.

Now suppose that we have two affine hulls with point
sets {U+ v+ + µ+} and {U− v− + µ−}. (They may
have different numbers of dimensions l). A closest pair
of points between the two hulls can be found by solving

min
v+,v−

||(U+v+ + µ+)− (U−v− + µ−)||2. (4)

Defining U ≡
(
U+ −U−

)
and v ≡

( v+
v−

)
, this can

be written as the standard least squares problem

min
v
||Uv − (µ− − µ+)||2 (5)

whose solution is v = (U>U)−1U>(µ−−µ+). Taking
the decision boundary f(x) = 〈w,x〉+ b,

w =
1
2
(x+ − x−) =

1
2
(I−P)(µ+ − µ−) (6)

where P = U (U>U)−1U> is the orthogonal projection
onto the joint span of the directions contained in the
two subspaces, I − P is the corresponding projection
onto the orthogonal complement of this span1, and x+

and x− denote the closest points on the affine hulls of
positive and negative classes, respectively. Note that w
lies along the line segment joining the two closest points
and it is half the line segment’s size. The offset b of the
separating hyperplane is given by

b = −w>(x+ + x−)/2. (7)

2.2 Inseparable Case

A problem arises if the affine hulls of classes inter-
sect, i.e., affine hulls are not linearly separable. If the
affine hulls of classes are close to being linearly sep-
arable and they overlap because of a few outliers, we
can restrict the influence of outlying points by reducing
affine hulls. Note that ignoring directions correspond-
ing to the overly small singular values during affine

1If the two subspaces share common directions, U>U is not in-
vertible and the solution for (v+,v−) and (x+,x−) is non-unique,
but the orthogonal complement remains well defined, giving a unique
minimum norm separator w. Numerically all cases can be han-
dled by finding Ũ, the U matrix of the thin SVD of U, and taking
P = Ũ>Ũ.



hulls constructions reduces the effects of noise and out-
liers up to the some point. But, we will use a different
approach here in order to cope with the outliers. To this
end, we use the initial affine hull formulation (1) and in-
troduce upper and lower bounds on coefficients αi to re-
duce affine hulls inspired by the idea that is introduced
to reduce convex hulls in [1]. It should be noted that
the reduced affine hulls are not simply uniformly scaled
versions of the initial complete affine hulls. One may go
further and choose different lower and uper bounds, or
define a different interval for every sample in the train-
ing set if a-priori information is available. For instance,
if the lower bound is set to zero, then the method will
be equivalent to the SVM classifier. Finding the closest
points on the reduced affine hulls can be written as a
quadratic optimization problem

min
α
||
∑

i:yi=+1

αixi −
∑

i:yi=−1

αixi||2

s.t.
∑

i:yi=+1

αi = 1,
∑

i:yi=−1

αi = 1, −τ ≤ αi ≤ τ,

(8)
where τ is the user-chosen bound. This optimization
problem (8) can be written in a more compact form as

min
α

∑
ij

αiαjyiyj 〈xi,xj〉

s.t.
∑
i

αiyi = 0,
∑
i

αi = 2, −τ ≤ αi ≤ τ,
(9)

where 〈xi,xj〉 denotes the inner product of xi and xj .
This is a quadratic programming problem that can be
solved using standard optimization techniques. Note
that the Hessian matrix, G = [Gij ] = yiyj 〈xi,xj〉, is
a positive semi-definite matrix, thus the objective func-
tion is convex and a global minimum exists as in SVM
classifier. Moreover, if the Hessian matrix is strictly
positive definite, the solution is unique and it is guar-
anteed to be the global minimum.

Since the coefficients are bounded between −τ and
+τ , the solution is determined by more points and no
extreme point or noisy point can excessively influence
the solution for well-chosen τ . Once we compute the
optimal values of coefficients αi, the normal and the
offset of the separating hyperplane can be computed as
in the linearly separable case

w =
1
2
(
∑

i:yi=+1

αixi −
∑

i:yi=−1

αixi), (10)

b = −1
2
w>(

∑
i:yi=+1

αixi +
∑

i:yi=−1

αixi), (11)

We call this method Large Margin Classifier of Affine
Hulls (LMC-AH) since it uses affine hulls to approxi-

mate class regions and finds the optimal separating hy-
perplane yielding the largest margin between the affine
hulls.

If the underlying geometry of the classes is highly
complex and nonlinear, and approximating classes with
linear affine hulls is not appropriate, we can map the
data into a higher-dimensional space where the classes
can be approximated with linear affine hulls. Note that
the objective function of (9) is written in terms of the
dot products of samples, which allows the use of the
kernel trick. Thus, by using kernel trick, – i.e., re-
placing 〈xi,xj〉 with the kernel function k(xi,xj) =
〈φ(xi), φ(xj)〉 where φ : IRd → = is the mapping
function from the input space to the mapped space =
– we can find the best seperating hyperplane parame-
ters in the mapped space. As a result, more complex
nonlinear decision boundaries between classes can be
approximated by using this trick.

3 Experiments

We tested the linear and kernelized versions of the
proposed methods on a number of data sets and com-
pared them to the SVM classifier. For the linearly
separable case, linear separator is determined by using
affine subspace estimation formulation, and subspace
dimensions are set by retaining enough leading eigen-
vectors to account for 95-98% of the total energy in
the eigen-decomposition. For the inseparable and non-
linear cases, we used quadratic programming formula-
tions. Both one-against-rest (OAR) and one-against-
one (OAO) approaches [6] are used for multi-class clas-
sification problems, and we report the results for the
one which performs the best. We first tested the lin-
ear LMC-AH method on a face recognition problem to
demonstrate that affine hull approximations are more
appropriate than convex hull approximations when the
dimensionality of the input space is high. To assess the
generalization performances of kernelized versions of
the methods, we tested them on seven low-dimensional
databases chosen from the UCI repository.

3.1 Experiments on the AR Face Database

The AR Face data set [7] contains 26 frontal images
with different facial expressions, illumination condi-
tions and occlusions for each of 126 subjects, recorded
in two 13-image sessions spaced by 14 days. For this
experiment, we randomly selected 20 male and 20 fe-
male subjects. The images were down-scaled (from
768 × 576), aligned so that centers of the two eyes fell
at fixed coordinates, then cropped to size 105×78. Raw



Table 1. Classification Rates (%) on the AR Face
Database.

Methods n = 7 n = 13 n = 20

LMC-AH 95.19±0.6 98.95±0.3 99.62±0.3

SVM 94.54±0.6 98.66±0.2 99.58±0.3

pixel values were used as features. For training we ran-
domly selected n = 7, 13, 20 samples for each individ-
ual, keeping the remaining 26−n for testing. This pro-
cess was repeated 10 times, with the final classification
rates being obtained by averaging the 10 results.

The results are shown in Table 1. Best results are
obtained by OAR strategy for both tested methods. The
proposed method gives better classification rates than
soft-margin linear SVM classifier in all cases. The per-
formance difference is more apparent for n = 7. These
results support our claims, suggesting that affine hulls
can be better models for representing classes in high-
dimensional spaces when the number of samples is lim-
ited.

3.2 Experiments on the UCI Databases

In this group of experiments, we tested the
kernelized versions of the methods (quadratic
programming formulations) on seven lower-
dimensional datasets from the UCI repository
(http://www.ics.uci.edu/∼mlearn/MLRepository.html):
Ionosphere, Iris, Letter Recognition (LR), Multiple
Features (MF) - pixel averages, Pima Indian Diabetes
(PID), Wine, and Wisconsin Diagnostic Breast Cancer
(WDBC). We used the Gaussian kernels, and all
design parameters are set based on random partitions
of datasets into training and test sets. OAO strategy
was used for multi-class problems. Reported classifi-
cation rates given in Table 2 are computed by 5-fold
cross-validation. Although being quite mixed, results
indicate that generalization performance of LMC-AH
compares favorably with SVM classifier.

4 Summary and Conclusion

We investigated the idea of basing large margin clas-
sifiers on affine hulls of classes as an alternative to
the SVM (convex hull large margin classifier). Given
two affine hull models, their corresponding large mar-
gin classifier is easily determined by finding a closest
pair of points on these two models and bisecting the dis-
placement between them. The experimental results pro-
vided useful insights on the potential application areas

Table 2. Classification Rates (%) on the UCI
Datasets.

UCI LMC-AH SVM

Ionosphere 93.7±2.9 92.9±3.2
Iris 94.7±2.9 95.3±3.8
LR 99.98±0.02 99.64±0.12
MF 98.4±0.4 98.0±0.4
PID 99.9±0.3 99.9±0.3
Wine 98.8±1.6 98.2±1.6
WDBC 96.0±2.5 97.6±0.7

of the proposed method. The proposed method is much
more efficient than SVM classifier in terms of classifica-
tion accuracy and real-time performance (testing time)
when the dimensionality of the sample space is high and
affine hulls are linearly separable (in this case solution is
easily determined based on subspace estimation which
requires simple linear algebra whereas SVM formula-
tion requires solving a quadratic programming). For the
low-dimensional databases generalization performance
of the proposed method compares favorably with SVM
classifier but SVM is more efficient in terms of test-
ing time. This is because of the fact that all training
data points contribute to the affine hull models (almost
all computed αi coefficients are nonzero), thus the pro-
posed quadratic optimization solutions lack sparseness,
and we need more computations to evaluate decision
functions. Nevertheless, some pruning techniques can
be employed to overcome this problem.
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