
Semi-Supervised Distance Metric Learning by Quadratic Programming 
 

Hakan Cevikalp 
Eskisehir Osmangazi University, Meselik 26480 Eskisehir Turkey. 

hakan.cevikalp@gmail.com 
 

 

Abstract 
 

This paper introduces a semi-supervised distance 
metric learning algorithm which uses pair-wise 
equivalence (similarity and dissimilarity) constraints 
to improve the original distance metric in lower-
dimensional input spaces. We restrict ourselves to 
pseudo-metrics that are in quadratic forms parameter-
ized by positive semi-definite matrices. The proposed 
method works in both the input space and kernel in-
duced feature space, and learning distance metric is 
formulated as a quadratic optimization problem which 
returns a global optimal solution. Experimental results 
on several databases show that the learned distance 
metric improves the performances of the subsequent 
classification and clustering algorithms. 
 

1. Introduction 
 

Learning distance metrics is very important for vari-
ous applications such as classification, image and 
video retrieval, and image segmentation [1-4], and this 
task is much easier when class labels associated to the 
data samples are available. However, in many applica-
tions, there is a lack of labeled data since obtaining 
labels is a costly procedure as it often requires human 
labor. On the other hand, in some applications, side 
information – given in the form of pair-wise equiva-
lence (similarity and dissimilarity) constraints between 
points – is available without or with less extra cost. For 
example, faces extracted from successive video frames 
in roughly the same location can be assumed to repre-
sent same person, whereas faces extracted in different 
locations in the same frame cannot be the same person. 
In some applications, side information is the natural 
form of supervision, e.g., in image retrieval, there is 
only the notion of similarities between the query and 
retrieved images. Side information may also come 
from human feedback in interactive environments, 
often at a substantially lower cost than explicit labeled 
data as in semi-supervised image segmentation appli-
cations [2]. 

Recently, learning distance metrics has been ac-
tively studied in machine learning. Some of the dis-

tance metric learning algorithms use class labels [5,6] 
and we will not consider them here. We will focus 
only semi-supervised distance metric learning algo-
rithms which use equivalence constraints. Existing 
semi-supervised distance metric learning methods [4,7-
13] revise the original distance metric (commonly cho-
sen as the Euclidean distance) to accommodate the 
pair-wise equivalence constraints, and then a clustering 
algorithm with the learned distance metric is used to 
partition data to discover the desired groups within 
data. In [9], a full-rank pseudo distance metric is 
learned by means of convex programming using 
equivalence constraints. Relevant Component Analysis 
[11] is introduced as an alternative to this method, but 
it can exploit only similarity constraints. Shalev-
Shwartz et al. [12] proposed a sophisticated online 
distance metric learning algorithm that uses side in-
formation. Davis et al. [10] proposed an information-
theoretic approach to learn a Mahalanobis distance 
function. Kwok and Tsang [7,8] formulated a metric 
learning problem that uses side information in a quad-
ratic optimization scheme. Note that all semi-
supervised distance metric learning algorithms men-
tioned above attempt to learn full-rank distance met-
rics, and thus they are suitable for lower-dimensional 
input spaces. In high-dimensional spaces it is better to 
learn low-rank distance metrics as in [2]. A compre-
hensive survey of semi-supervised distance metric 
learning techniques can be found in [13]. 

In this paper we also focus on lower-dimensional 
spaces and try to learn a pseudo distance metric pa-
rameterized by positive semi-definite matrices. To this 
end, we formulate the problem as a quadratic optimiza-
tion problem as in [7,8], but we incorporate the large 
margin concept in the procedure and reduce the num-
ber of user-chosen parameters.  
 

2. Method 
 

2.1 Problem Setting 
 

Let , d
i ℜ∈x ni ,...,1= , denote the samples in the 

training set. We are given a set of equivalence con-



straints in the form of similar and dissimilar pairs. Let 
S be the set of similar pairs 
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Our objective is to find a pseudo-metric that satisfies 
the equivalence constraints and at the same time re-
flects the true underlying relationships imposed by 
such constraints. We focus on the pseudo-metrics of 
the form 
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where  is a symmetric positive semi-definite ma-
trix. In this case there exists a rectangular projection 
matrix W of size  ( ) satisfying  
such that  
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2.2 Learning Distance Metric by Quadratic 
Programming 

 

Assume that the learned distance matrix is . In-
tuitively, the learned distance metric must pull similar 
pairs closer and push the dissimilar pairs apart. Addi-
tionally, it should generalize well to unseen data. To 
this end, we define the margin b, which is defined to 
be the minimum separation between all pairs of similar 
and dissimilar samples. That is 
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Without loss of generality, we can scale A and b by 
any positive constant. We therefore set b to be 2 and 
search for a distance matrix A which has small norm. 
However, if we have m similar and n dissimilar pairs, 
the number of total constraints will be mn which may 
be a large number. Therefore we introduce a threshold 

1≥′γ  and replace the constraints with  
,),(  ,1),(   2 Sd jiji ∈−′≤ xxxxA γ              

,),(,1),(2 Dd lklk ∈+′≥ xxxxA γ                   (5) 
If we let 1−′= γγ  and introduce slack variables for 
the sample pairs violating margin constraints, we ob-
tain the following quadratic programming problem 
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where  and  are the numbers of pairs in S and D 
respectively,  are non-negative user-chosen 
adjustable parameters, and 

Sn Dn

DS CC ,

klij ξξ ,  are slack variables. 
Note that the similar sample pairs which are far from 
each other contribute more to the loss function than the 
ones which are closer. In a similar manner, the dissimi-
lar pairs which are closer to each other contribute more 
to the loss function than the ones which are further 
from each other. In fact if the square of distances be-
tween the dissimilar pairs are larger than the threshold 
( γ ′+1), those dissimilar sample pairs do not contribute 
to the loss function at all. Therefore, just as in the Sup-
port Vector Machine’s hinge loss, our objective func-
tion is triggered by the dissimilar pairs in the vicinity 
of decision boundaries that participate in the construc-
tion of the inter-class decision boundaries. In contrast, 
there is not such a systematical selection mechanism 
that respects the margin concept in the method of 
Kwok and Tsang [7,8]. They just aim to pull all similar 
pairs together and to maximize the distance differences 
between the learned and original distance metrics for 
dissimilar sample pairs. 

To derive the dual, we consider the Lagrangian 
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where 0,,,, ≥µηηαα klijklij . The Lagrangian L has to 
be maximized with respect to µηα ,,  and minimized 
with respect to γξ ,,A . The optimality conditions yield 
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Thus, the dual of the optimization problem becomes 
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subject to  
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This is a quadratic programming problem with ds nn +  
variables (which is independent of input dimensional-
ity d) as in [7]. From the Karush-Kuhn-Tucker condi-
tions, we get 
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Thus to find the value of γ , we take all the sample 
pairs with SSij nC /0 << α  and , com-

pute corresponding  and  and 
average them.  

DDkl nC /0 << α
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Note that the resulting distance matrix A is not nec-
essarily a positive semi-definite matrix. To make sure 
that A is a positive semi-definite matrix, we apply ei-
gen-decomposition to A and construct it using positive 
eigenvalues and corresponding eigenvectors, 

 where T
kkk k uuA ∑= λ kλ ’s are the positive eigenvalues 

and ’s are the corresponding eigenvectors. ku
 

2.3 Extension to the Nonlinear Case 
 

Here we consider the case where the data samples 
are mapped into a higher-dimensional feature space 
and the distance metric is sought in this feature space. 
This is accomplished by using the kernel trick. Notice 
that the objective function of (7) can be written in 
terms of the dot products of the sample pairs. Thus, we 
replace all j

T
iji xxxx =,  with the kernel function 
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and  in the mapped space under the metric A can 
be computed as  
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3. Experiments 
 

We performed experiments on two synthetic data-
bases and three real-world databases chosen from UCI 
repository (http://www.ics.uci.edu/~mlearn/MLReposi- 
tory.html). We compared the distance metric obtained 
by the proposed method to the Euclidean distance met-
ric and the distance metrics learned by the Relevant 
Component Analysis (RCA) [11] and the method of 
Tsang and Kwok [8]. We used only positive semi-
definite distance matrices in the experiments. For the 
nonlinear case, we used the Gaussian kernels. In order 
to assess the performance of the distance metrics, we 
evaluated the clustering and classification perform-
ances. The k-means and spectral clustering are used as 
clustering algorithms (we report the one yielding the 
best result), and the pair-wise F measure (harmonic 
mean of the pair-wise precision and recall measures 
[2]) is used to evaluate the clustering results based on 
the underlying classes. For classification, we used 1-
nearest neighbor classification rule with the learned 
distance metrics. 
 

3.1 Experiments on Synthetic Databases 
 

The first synthetic database includes 10-
dimensional data samples belonging two classes. The 
first dimension is distinctive feature, where the first 
class is normally distributed as N(3,1) and the second 
class as N(-3,1). The remaining dimensions are irrele-
vant features distributed as N(0,16). Since the data are 
linearly separable, we only tested linear methods for 
this database. We created 100 samples for each class 
and used 50 samples per class for choosing equiva-
lence constraints and the remaining samples are used 
for testing. We used only 100 (60 similarity and 40 
dissimilarity) equivalence constraints. For the second 
synthetic database, we used 2-dimensional samples 
drawn from two-component mixture models which are 
typically used in XOR problem. Classes are not line-
arly separable, thus we tested kernel methods with the 
Gaussian kernel. We used only 40 (20 similarity and 
20 dissimilarity) constraints. Clustering and classifica-
tion accuracies are given in Table I and Table II re-
spectively. Results are averages over 50 runs. 
 

Table I. Classification Accuracy (%) 
Data Kernel Euclidean 

Metric RCA Tsang & 
Kwok [8] 

Proposed 
Method 

1st 
Synth. Linear 81.1 98.9 93.8 94.1 

2nd 
Synth. Gaussian 99.95 - 99.89 99.95 



 

Table II. Clustering Accuracy (%) 
Data Kernel Euclidean 

Metric RCA Tsang & 
Kwok [8] 

Proposed 
Method 

1st 
Synth. Linear 58.2 96.4 87.4 88.6 

2nd 
Synth. Gaussian 66.22 - 99.18 99.94 

 

Since the first synthetic data has identical covari-
ance distribution for both classes, RCA performs the 
best as expected. Our proposed method comes the sec-
ond outperforming method of Tsang and Kwok [8] 
with a slight edge. For the second database RCA does 
not work well since the data has nonlinear distribution. 
The best classification accuracy is obtained by both the 
proposed method and Euclidean metric, whereas our 
proposed method is the best performer in terms of 
clustering accuracy. Note that the clustering perform-
ance of the Euclidean metric is very low. In general, all 
metric learning methods show an improvement over 
the Euclidean metric. 

 

3.2 Experiments on Real Databases 
 

Here we tested our proposed method on three data-
bases (Iris, Wine, and Wisconsin Diagnostic Breast 
Cancer - WDBC) chosen from UCI Repository. For all 
datasets, we used the half of the samples for choosing 
150 pair-wise equivalence constraints, and the remain-
ing data samples are used for testing. Clustering and 
classification accuracies are given in Table III and Ta-
ble IV respectively. Results are averages over 20 runs. 
 

Table III. Classification Accuracy (%) 
Data Kernel Euclidean 

Metric RCA Tsang & 
Kwok [9] 

Proposed 
Method 

Iris Linear 
Gaussian 

95.83 
95.83 

95.75 
- 

93.56 
96.16 

95.00 
96.67 

Wine Linear 
Gaussian 

93.77 
93.77 

95.00 
- 

94.91 
94.40 

95.51 
96.70 

WDBC Linear 
Gaussian 

95.35 
95.35 

90.50 
- 

94.72 
95.14 

95.28 
96.27 

 

Table IV. Clustering Accuracy (%) 
Data Kernel Euclidean 

Metric RCA Tsang & 
Kwok [9] 

Proposed 
Method 

Iris Linear 
Gaussian 

82.22 
82.22 

90.52 
- 

86.23 
89.74 

88.67 
88.50 

Wine Linear 
Gaussian 

84.73 
84.73 

85.16 
- 

84.40 
84.30 

84.63 
85.16 

WDBC Linear 
Gaussian 

86.17 
86.17 

87.17 
- 

87.23 
87.29 

88.84 
89.91 

 

As can be seen from the tables, our proposed 
method yields the best classification accuracies for all 
tested methods by using the Gaussian kernel. In terms 
of clustering accuracy, the proposed kernel method 
achieves the best accuracy for Wine and WDBC data-
bases. Kernel methods usually give better results com-
pared to their linear counterparts.  
 

4. Conclusion 
 

In this paper we introduced a new distance metric 
learning algorithm that uses equivalence constraints. 
The metric learning problem is formulated as a quad-
ratic optimization problem which returns a global op-
timum solution. The method works both in the input 
and the kernel induced feature spaces, and it is easier 
to use compared to the method proposed in [8] since 
the number of free parameters is reduced. Experimen-
tal results show that the learned distance metric im-
proves the clustering and classification performances 
and generally outperforms the method of Tsang and 
Kwok [8]. 
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