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A B S T R A C T

In this paper, we propose a robust and fast transductive support vector machine (RTSVM) classifier that can be
applied to large-scale data. To this end, we use the robust Ramp loss instead of Hinge loss for labeled data
samples. The resulting optimization problem is non-convex but it can be decomposed to a convex and concave
parts. Therefore, the optimization is accomplished iteratively by solving a sequence of convex problems known
as concave-convex procedure. Stochastic gradient (SG) is used to solve the convex problem at each iteration,
thus the proposed method scales well with large training set size for the linear case (to the best of our
knowledge, it is the second transductive classification method that is practical for more than a million data). To
extend the proposed method to the nonlinear case, we proposed two alternatives where one uses the primal
optimization problem and the other uses the dual. But in contrast to the linear case, both alternatives do not
scale well with large-scale data. Experimental results show that the proposed method achieves comparable
results to other related transductive SVM methods, but it is faster than other transductive learning methods and
it is more robust to the noisy data.

1. Introduction

Supervised learning techniques, e.g., large margin classifiers
[1,2,3,4], use training data with class labels being associated to the
data samples to find a prediction function to estimate labels of new test
data samples. However, in many applications, there is a lack of labeled
data since obtaining labels is a costly procedure as it often requires
human effort. Furthermore, manual labeling is a slow and error-prone
process. As a result, in many applications, only a small fraction of data
samples can be labeled although we have access to a massive collection
of unlabeled data. For instance, in web and text categorization
applications, there are abundant unlabeled data that can be collected
easily by a user. Similarly, in genomics applications, functions of many
genes in sequenced genomes remain unknown and there is only a
limited amount of available labeled biological information. In most
cases, unlabeled data carry additional information that helps us to find
a more accurate prediction function. Transductive (or semi-supervised)
learning aims to find a better prediction function on the basis of
information coming from both labeled and unlabeled data in contrast
to the supervised learning which only uses labeled samples and ignores
any information potentially conveyed in unlabeled data samples.

Using unlabeled data samples for learning was first proposed by
Vapnik and Sterin [5] under the name transductive support vector
machine (TSVM), and the first implementation of TSVM was intro-

duced by Bennett and Demiriz [6]. Bennett and Demiriz [6] formulated
the learning problem as a mixed integer program. This formulation
requires the introduction of a binary variable for each unlabeled sample
in the training set, thus the method is not suitable for large-scale data.
Then, Joachims [7] proposed a local combinatorial search approach,
called as SVMLight-TSVM (TSVMLight), that is practical for about 10
thousand examples. In this method, a supervised SVM is trained first
and it is used for labeling the unlabeled data. Then, current solution is
improved by switching labels of a pair of unlabeled data samples
selected based on some heuristic techniques. Chapelle and Zien [8]
proposed a gradient-descent based margin maximization algorithm to
solve the transductive SVM learning problem and combined it with a
graph-based embedding to improve the results. Debie and Cristianini
[9] and Xu et al. [10] relax the TSVM training problem and formulate it
as a convex semi-definite programming. Although, these convex
methods do not suffer from local optimal solutions, they do not scale
well with large-scale data. Collobert et al. [11] and Wang et al. [12]
solve TSVM problem using an approximation optimization procedure
known as concave-convex procedure [13], which decomposed the
TSVM optimization problem into convex and concave parts. The
optimization is accomplished iteratively by solving a sequence of
convex problems obtained by linearly approximating the concave lost
function. Although these methods suffer from locally optimal solutions,
they scale well with the data set size compared to other TSVM
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algorithms. More recently, Li et al. [14] introduced WELLSVM (Weakly
Labeled SVM) that maximizes the margin by generating the most
violated label vectors iteratively and then combines them by using
efficient multiple kernel learning techniques. This method uses the
cutting plane algorithm thus it is suitable for large-scale datasets with
sizes up to a few millions. There are also other methods that use
deterministic annealing [15,16], branch-and-bound algorithms [17],
non-smooth optimization method [18], continuation method [19],
maximum entropy [20], active learning [21], random-vector functional
network [22], multiple kernel learning [23] and others [24] to solve
transductive learning problems. Lastly, in addition to these margin-
based transductive approaches there are also methods [25,26,27,28,29]
that use limited amount of labeled data to estimate labels of unlabeled
data by using graph-based (spectral clustering) techniques, but we do
not consider these in our study. A more comprehensive survey of
transductive optimization techniques can be found in [30].

In this paper, we propose a robust and fast TSVM method based on
TSVM method of [11]. More precisely, we replace the Hinge loss that is
used for labeled data with a more robust Ramp loss. Moreover, we
solve the optimization problem in the primal space by using a
stochastic gradient algorithm as opposed to [11] that solves the
TSVM problem in the dual space. Solving the optimization problem
in the primal space using stochastic gradient enables us to use the
method in large-scale datasets including millions of data. In contrast,
the dual solver of [11] does not scale with large-scale data well since it
uses a quadratic programming solver based on generalized sequential
minimal optimization (SMO) [31] algorithm.

2. Method

2.1. Preliminaries and TSVM formulation

Consider that we are given a set of L labeled training samples
yx= {( , ),1 1 yx…, ( , )}L L , x ∈ IRd , y ∈ {+1, − 1} and an unlabeled set

of U vectors x x= { , …, }L L U+1 + . Our goal is to find the best
separating hyperplane characterized by θ bw= ( , ), where w is the
normal of the hyperplane and b is the bias term. To label new samples,
we use the sign of the following decision function

f bx w x( ) = + .θ
⊤ (1)

The main idea of TSVM learning is to find an hyperplane that separates
the labeled samples with a large margin at the same time ensures that
the unlabeled samples will be as far as possible from the margin as
illustrated in Fig. 1. To this end, earlier methods [6,7,8] used the
following optimization formulation

∑ ∑C ξ C ξ y b ξ

i L b ξ i L L U

w w x

w x

arg min 1
2

+ + * s. t. ( + ) ≥ 1 − ,

= 1, …, , + ≥ 1 − , = + 1, …, + .

b i

L

i
i L

L U

i i i i

i i

w,

2

=1 = +1

+
⊤

⊤ (2)

This minimization problem can also be written as unconstrained
optimization problem in the form

∑ ∑C H y b C H bw w x w xarg min 1
2

+ ( ( + )) + * ( + ),
b i

L

i i
i L

L U

i
w,

2

=1
1

⊤

= +1

+

1
⊤

(3)

where the function H t t( ) = max(0, 1 − )1 is the classical Hinge loss
plotted in Fig. 2, and C C( *) is a user defined parameter that controls
the weight of errors associated to the labeled (unlabeled) data samples.
The loss function for unlabeled data is shown in Fig. 3 (a). Note that the
loss function on the unlabeled data is not differentiable, thus it is
replaced by symmetric sigmoid function texp( − 3 )2 in [8]. It turned out
the TSVM formulation given in (3) has the potential to assign all
unlabeled samples to only one of the classes with a very large margin,
which yields a poor classification accuracy. In order to solve this
problem, a balancing constraint that enforces the unlabeled data to be
assigned to both classes based on the same fraction of labeled data
samples is introduced in [7]. Chapelle and Zien [8] used the following
relaxed balancing constraint, which we also use in this study

∑ ∑
U

b
L

yw x1 ( + ) = 1 .
i L

L U

i
i

L

i
= +1

+
⊤

=1 (4)

It should be noted that TSVM optimization problem given in (3) is
not convex. Therefore, Collobert et al. [11] and Wang et al. [12] used
concave-convex procedure (CCCP) to solve this non-convex problem.
CCCP basically decomposes a non-convex function into a convex and a
concave part and it solves the problem by an iterative procedure where
each iteration approximates the concave part by its tangent and
minimizes the resulting convex function as given in Algorithm 1. The
convergence of CCCP algorithm has been proved in [13]. It should be
noted that the convex optimization problem that constitutes the core of
the CCCP algorithm can be solved by using efficient convex algorithms.
Collobert et al. [11] replaced the symmetric Hinge loss of unlabeled
points with the symmetric Ramp loss defined as

SR t R t R t( ) = ( ) + ( − ),s s s (5)

where R t s t( ) = min(1 − , max(0, 1 − ))s is the Ramp Loss function
illustrated in Fig. 2. Here s−1 < ≤ 0 is a parameter that must be set
by the user. As shown in the figure, the Ramp Loss function can be
written as the sum of the convex Hinge loss and a concave loss function
(or as the difference between two convex Hinge losses), i.e.,
R t H t H t( ) = ( ) − ( )s s1 . The Ramp Loss function can be seen as a clipped
version of the Hinge loss, and the parameter s controls where we clip
the Ramp loss. For the symmetric Ramp loss function s parameter
controls the wideness of the flat part of the symmetric component of
the symmetric Ramp loss plotted in Fig. 3. After some algebra, the final
transductive SVM method is converted to an iterative procedure where
a dual convex quadratic programming problem is solved at each
iteration [11]. It should be noted that this method uses dual formula-
tion of SVM to solve the convex QP problem and it is based on SMO
algorithm. Therefore, it is better suited for moderate sized data rather
than large-scale data.

Algorithm 1. The Concave-Convex Procedure

Initialize θ0

repeat

θ J θ J θ θ= arg min ( ( ) + ′ ( ) )t
θ convex concave

t+1

until convergence of θt.

2.2. Robust Transductive Support Vector Machine (RTSVM) classifier

Collobert et al. [11] use the Hinge loss for labeled samples and the
symmetric Ramp loss for unlabeled samples. These loss functions are
not in the same range as shown in Figs. 2 and 3. For the symmetric

Fig. 1. Finding the best separating hyperplane by transductive learning: The supervised
SVM which uses only labeled data (shown with ’+’ and ’−’) returns the dashed line as
separating hyperplane. However, when the unlabeled data (shown with black circles) is
also incorporated in learning, a better separating hyperplane shown with solid line can be
found (figure is adopted from [7])
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Ramp loss, a sample can introduce at most a limited amount of cost
value no matter of its position with respect to margin in the input space
(the loss can be maximum 0.8 when s is set to −0.2). However, there is
no bound for the Hinge loss, e.g., a single outlying point farther from
the margin can yield to a large loss. Therefore, the labeled outlying
points – the samples that are misclassified outside the margin – start to
play a dominant role in determining the separating hyperplane since
they tend to have the largest margin according to the Hinge loss. Also,
weight parameter of labeled samples C is usually set to higher values
compared to weight parameter of unlabeled samples C*, which
aggravates the problem. To ameliorate this drawback, we interchange
the convex Hinge loss with a more robust non-convex Ramp loss
function. The Ramp loss also bounds the maximum amount of loss
similar to the symmetric Ramp loss function and this helps to suppress
the influence of misclassified examples. The superiority of the Ramp
loss over the Hinge loss for supervised SVM training is well-proven and
demonstrated in [32,33,34,35], so we adopt it to transductive learning
here.

Our robust TSVM method solves the following problem

∑ ∑

∑ ∑

C R y b C SR b

U
b

L
y

w w x w x

w x

arg min 1
2

+ ( ( + )) + * ( + )

s. t. 1 ( + ) = 1 .

b i

L
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i L

L U

s i

i L

L U

i
i

L

i

w,

2

=1

⊤

= +1

+
⊤

= +1

+
⊤

=1 (6)

This optimization problem is identical to the one studied by Collobert
et al. [11] with the exception that the more robust non-convex Ramp
loss is used for labeled samples instead of the Hinge loss. To use the
symmetric Ramp loss function defined for unlabeled data samples,
each unlabeled sample appears as two examples labeled with both
negative and positive classes. More precisely, we create the new
samples as follows

y i L L U y

i L U L U i L U L Ux x

= + 1, ∈ [ + 1, …, + ], = − 1,

∈ [ + + 1, …, + 2 ], = , ∈ [ + + 1, …, + 2 ].
i i

i i U−

(7)

Then, by using the equations R t H t H t( ) = ( ) − ( )s s1 and
SR t R t R t( ) = ( ) + ( − )s s s , the above cost function without constraint
can be written as

J θ J θ J θ( ) = ( ) + ( ),convex concave (8)

where

∑ ∑J θ C H y b C H y bw w x w x( ) = 1
2

+ ( ( + )) + * ( ( + )),convex
i
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i i
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⊤

= +1

+2

1
⊤

(9)

and

∑ ∑J θ C H y b C H y bw x w x( ) = − ( ( + )) − * ( ( + )).concave
i

L

s i i
i L

L U

s i i
=1

⊤

= +1

+2
⊤

(10)

Because the cost function (6) can be decomposed into a convex and
concave part, we can apply concave-convex procedure (CCCP) to solve
the problem. By employing CCCP, the minimization of J θ( ) with respect
to θ bw= ( , ) can be achieved by iteratively updating the parameter θ by
the following rule

θ J θ J θ θ= arg min( ( ) + ′ ( ) ),t

θ
convex concave

t+1
(11)

subject to the constraint b yw x∑ ( + ) = ∑
U i L

L U
i L i

L
i

1
= +1
+ ⊤ 1

=1 . To this end, we
need to find the derivative of the concave part with respect to θ,

∑ ∑J θ
θ

C H θ
f

f
θ

C H θ
f

f
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x
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x∂ ( )
∂

= − ∂ ( )
∂ ( )

∂ ( )
∂

− * ∂ ( )
∂ ( )

∂ ( )
∂
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i

L
s

θ i

θ i

i L

L U
s

θ i

θ i

=1 = +1

+2

To simplify this, let us define
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Fig. 2. The illustration of the Ramp loss function, R t H t H t( ) = ( ) − ( )s s1 , where H t a t( ) = max(0, − )a is the classical Hinge loss. Here, we set s = − 0.20.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3
1

1.2

1.4

1.6

1.8

2

2.2

Fig. 3. Loss functions used for unlabeled data: (a) H t t( ) = max(0, 1 − | |)1 , (b) The symmetric Ramp loss, SR t R t R t( ) = ( ) + ( − )s s s . Here, we set s = − 0.20.
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⎧
⎨⎪
⎩⎪

β y J θ
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C y b s i L
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w x
w x

= ∂ ( )
∂ ( )

=
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⊤
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(12)

By using the definition f bx w x( ) = +θ
⊤ and f θx x∂ ( )/∂ = ( , 1)θ i i , each

update of CCCP applied to the minimization problem requires the
minimization of the following cost

⎛
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in the convex cost function, the overall optimization problem becomes
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The above cost function includes sum of convex functions, thus the
resulting cost function is also convex. Instead of taking dual of the
problem and solving it with a dual QP solver as in [11], we consider the
primal problem and solve it by using stochastic gradient (SG). We
simply prefer SG here since it scales better with data set size compared
to the dual QP solver. Without the balancing constraint, application of
the SG algorithm is pretty straightforward, but the balancing constraint
complicates the problem. To handle the constraint, we first simplify the
balancing constraint as follows

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
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⎞
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⎟⎟ ∑γ
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i
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1
= +1
+

=1 (14)

There are basically two approaches to force the equality constraint: In
the first approach, we initialize the algorithm with the hyperplane
parameters satisfying the constraint and then select directions that will
both decrease the objective function and satisfy the constraint at the
same time. The following descent direction satisfies both

⎛
⎝⎜

⎞
⎠⎟d I c c

c
g= − −

⊤

2 (15)

where g is the sub-gradient of the objective function with respect to
θ bw= ( , ), and I is the identity matrix. The TSVM is generally
initialized by using the hyperplane returned by the supervised SVM
classifier and there is no guarantee that the constraint is satisfied
initially. As a second more convenient approach that was adopted in
this study, we can project the updated hyperplane parameters on the
balancing constraint after each update. We define the orthogonal
projection : IR → IRd d+1 +1 onto the affine sub-space

γv v c{ ∈ IR | = }d+1 ⊤ as

γv v v c v( ) = arg min ́ − , s. t. ́ = ,
v ́

⊤
(16)

which has the closed form solution

γv c
c

c v v( ) = ( − ) + .2
⊤

(17)

So this is very straightforward procedure that can work with any
initialization. The resulting final robust TSVM method can be sum-
marized as in Algorithm 2. We use SG algorithm given in Algorithm 3
to solve the convex minimization problem that constitutes the core of
the CCCP. Solving the optimization problem in the primal space using
SG is the key for the speed and scalability. In [36], it was shown that

total run time complexity of SG algorithm is given byO d λ( /( ϵ)), where d
is a bound on the number of non-zero features, λ is the regularization
parameter. Therefore, the run-time does not directly depend on the size
of the training set, which makes SG algorithm ideal for large-scale
datasets. As a result, the proposed method also scales well with large-
scale data. On the other hand, solvers using dual space are not
applicable for large-scale data. The reason is that a runtime of any
genuine dual-space solver (i.e solver optimizing the dual variables only)
cannot be better than O(n2) for noisy data (which is the time needed
just to evaluate the objective), where n stands for the number of
examples. As a result, the dual-space solvers, like the SMO algorithm,
are not applicable for truly large-scale problems. Finally, to initialize
the method, we use supervised linear SVM with labeled data samples
only as in [11]. CCCP converges very quickly, e.g., in our experiments
CCCP converged to a solution after at most five iterations.

Algorithm 2. The Robust Transductive Support Vector Machines
(RTSVM)

Initialize θ bw= ( , )0 0 0 , t=0, ϵ > 01 , ϵ > 02
Compute

⎧
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while w w∥ − ∥ ≥ ϵt t+1 1 or β β∥ − ∥ ≥ ϵt t+1 2 do

– Solve the following convex minimization problem by using SG
algorithm given in Algorithm 3
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– Set t t= + 1;
end while

Algorithm 3. Stochastic Gradient Based Solver with Projection

Initialize
w1, b1, T > 0, λ > 00 , ϵ > 0
Description:

for t T∈ 1, …, do
λ λ t← /t 0 ;
for i L U∈ randperm( + 2 ) do

– Compute sub-gradients

⎪

⎪
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⎪

⎧
⎨
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– Update hyperplane parameters

w w w← − ( + g )͠ t t
λ

L U t t+ 2
t

b b h← −∼
t t

λ
L U t+ 2

t

– Project parameters onto the feasible set imposed by the
constraint
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b bw w( , ) = ( , )͠ ∼
t t t t

end for
if t w w( ≥ 2)&( − < ϵ)t t−1 , break

end for

Algorithm 4. The Kernel Robust Transductive Support Vector
Machines (Kernel RTSVM)

Initialize θ bw= ( , )0 0 0 , t=0, ϵ > 01 , ϵ > 02
Compute
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while w w∥ − ∥ ≥ ϵt t+1 1 or β β∥ − ∥ ≥ ϵt t+1 2 do

– Solve the following convex minimization problem by using
SMO
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– Compute wand b by using (25) and (30) and set
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– Set t t= + 1;
end while

2.3. Using kernel functions with RTSVM

Let Φ(. ) be the implicit feature space embedding and
k Φ Φx x x x( , ) = ( ), ( )i j i j be the corresponding kernel function, where
. denotes the feature space inner product. The proposed method can
be used with kernels without explicitly mapping the data samples since
the solution can be expressed as a linear combination of the training
samples. To kernelize the method we use two approaches: The first
approach is only suitable for moderate sized data and it uses the dual of
the problem to write the solution in terms of the inner products data
samples as in [11]. The derivations are given in Appendix and the final
resulting algorithm is summarized in Algorithm 4. In the second
approach, we directly minimize the primal problem by using kernels
as in [36,37]. The main trick is that, at each iteration of the SG
algorithm the separating hyperplane normal can be written as

α Φw x= ∑ ( )i S i i∈ , where S is the subset of L U{1, …, + 2 } that includes
the indices corresponding to the non-zero αi coefficients (the coeffi-
cients that correspond to the support vectors). Therefore, we can store
the set S and the non-zero coefficients αi instead of storing w. The
inner product with any mapped test sample Φ x( )test can be computed as

∑Φ α kw x x x, ( ) = ( , ).test
i S

i i test
∈ (18)

Note that only one element of α is changed at each iteration and the
method uses kernel evaluations instead of explicit mapping. It is
worthwhile pointing out that even though the solution is represented

in terms of αi, we calculate the sub-gradient with respect to the hyper-
plane normal w.

It turns out that both methods are computationally expensive and
they can be used for moderate sized data only. Moreover, stochastic
gradient based kernel RTSVM is even computationally more expensive
than SMO based algorithm given in Algorithm 4 since the solution is
not sparse anymore (almost all αi coefficients are nonzero) and we have
to make kernel evaluations with respect to all training data at each
iteration. So, we recommend to use SMO based kernel method.

3. Experiments

We provide illustrative tests of transductive learning methods on
both synthetic and real-world datasets with different characteristics. Our
Robust Transductive SVM (RTSVM) method1 is compared to classical
SVM and other transductive learning methods including TSVMLight [7],
TSVMCCCP [11], WELLSVM [14] and TSVMLDS [8]. For multi-class
classification problems, we used one-against-rest (OAR) regime for all
methods. For classical SVM, we trained the classifier with labeled data
and used unlabeled data as a test set whereas the transductive learning
methods used both training and test data to learn the classifier. Finally,
for small datasets, we used LIBSVM package2 for training whereas
LIBOCAS3 is used for large-scale data experiments.

3.1. Experiments on synthetic data

We first test our algorithms on a synthetic data. To this end, we
created normally distributed data shown in Fig. 4. Both classes have the
same covariance structure but their centers are different, and each
training class has 50 samples. For testing, we also created 50 samples per
class by using the same distribution. The classes are close to being
linearly separable, so we test only linear kernels here. To demonstrate
the robustness against to outliers, we gradually corrupted data switching
the randomly chosen examples of positive and negative classes. Table 1
shows the classification accuracies of test set for different fraction of
outliers (e.g., 20% rate is obtained by switching the labels of 10 samples
from both classes). For clean data, SVM, TSVMCCCP, and TSVMLight

implementation slightly beat others. As the number of outlying samples
is increased, the accuracies of all other methods drop except RTSVM and
TSVMLDS methods where the proposed RTSVM yields 93% and
TSVMLDS yields 93% or 92% until outliers ratio is 40%. Accuracies of
other methods are still satisfactory even though the fraction of outliers is
quite high owing to the fact that we have chosen a small C parameter to
reduce the effects of outliers. But, when the fraction of outliers is set to
50% there is a significant drop in accuracies of all methods. But our
proposed RTSVM is less affected compared to others and it significantly
outperforms other classifiers by achieving 73% accuracy even though the
half of the data samples are outliers. It should be notedWELLSVM yields
the worst accuracy. It is due to the lack of the bias term. The provided
software by the authors [14] only learns hyperplane normal without the
bias term (as a result all hyperplanes are restricted to pass through the
origin), thus the returned hyperplane sometimes fails to separate the
data well as in this example.

3.2. Experiments on small datasets

Here we test our algorithms on the four well-known datasets used
for testing transductive learning methods, another three datasets from
UCI Repository4 and Volatile Organic Compound (VOC) dataset.5 The

1 Our code and some tested datasets are available at http://mlcv.ogu.edu.tr/
softwarertsvm.html.

2 available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/
3 available at http://cmp.felk.cvut.cz/~xfrancv/ocas/html/
4 http://archive.ics.uci.edu/ml
5 http://users.rowan.edu/~polikar/RESEARCH/vocdb.html
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sizes and dimensionality of the datasets are given in Table 2. The first
four datasets are used to test transductive learning algorithms in [8,30]
and 10 different splits for each dataset into labeled and unlabeled
points are provided by the authors. We use the same splits and
therefore our results are directly comparable to other tested methods
in [8,30]. For the remaining datasets, we used the same setup and
create 10 different splits by choosing random training and test samples.
Results are given in Table 3. Except Coil20 and Uspst datasets, the
transductive learning algorithms typically beat SVM results or yield to
similar accuracies. Among all tested transductive learning algorithms,
TSVMLDS is clearly the best performing method and it achieves the
best accuracies for four of the tested datasets. The performance
difference is very significant especially on Coil20, Uspst and Iris
datasets. Our proposed method slightly beats others on two datasets.
In general, TSVMLDS

first applies a nonlinear embedding method
based on local neighborhood and then applies TSVM to the embedded
data. So, we apply the same setting for the proposed method and
denote the resulting method by RTSVMLDS. Our results also signifi-
cantly improve after this procedure and we get the best accuracies on
Coil20 and Uspst datasets by using RTSVMLDS. These results show
that the significant improvement on those 3 datasets is due to the pre-
processing of the data not due to the type of the transductive SVM
solver. Note that we use a very limited number of labeled samples for

all datasets and there is very unlikely that there are many outliers. For
such cases, RTSVM and TSVMCCCP must yield to identical results, but
we obtain different accuracies since we use solvers (SG and SMO) with
very different characteristics for those methods.

3.3. Experiments on large scale data

Here we test our algorithm on five large-scale datasets: CIFAR10, a
face dataset which is created by using three public datasets, Epsilon,
SensIT Vehicle, and MNIST. The proposed RTSVM, TSVMCCCP, and
WELLSVM are the only methods that can be applied in this setting, so
we compare only these methods. For some datasets, TSVMCCCP failed
to converge since it uses SMO. If the result of SVMCCCP is not given in
a table, it indicates that it failed to converge for that particular dataset
in 10 days.

3.3.1. Cifar10 experiments
Cifar10 dataset includes 32×32 color images of 10 object classes:

airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.
Some images from this dataset are shown in Fig. 5. There are 6000
images per class, thus the total number of samples is 60,000. Fisher
vector (FV) representation is used to represent images and we used a
similar setup as in [38]. The dimensionality of the tested descriptors is
reduced to 64 by using Principal Component Analysis. We used
1.2 × 106 descriptors to learn PCA projections and 128-component
Gaussian mixture model (GMM) components. The final dimension of
the image FVs is 16,384. So both the dimensionality and the training
set size are large.

In our experiments we randomly selected 1000 labeled data
samples from each class and used the remaining 5000 as unlabeled
data samples. This procedure is repeated 5 times and the final
accuracies are averages of the results obtained in each trial.
Accuracies are given in Table 4. WELLSVM achieves the best accuracy
followed by the proposed method.

3.3.2. Gender recognition experiments
We used a collection of three public datasets: Labeled Faces in the

Wild [39], PubFig [40] and PAL [41]. In addition, we also downloaded
around 14 thousand face images from the Internet. The images are
annotated by several independent persons. We selected a subset of
near-frontal images (yaw angle in [−30°, 30°]) containing 34,259 faces
in total. The database contains challenging “in-the-wild” images
exhibiting a large variation in the resolution, illumination changes,
race and background clutter. Fig. 6 shows a sample of male and female
images.

The faces were split randomly three times into training, validation
and testing part in the ratio 60/20/20. We made sure that images of the
same identity never appear in different parts simultaneously.

The faces were localized by a commercial face detector6 and
consequently processed by a landmark detector [42]. The detected
landmarks were used to transform the face into its canonical pose of

Table 2
Small Sized Datasets.

Data Set # Classes Dimensionality # Samples # Labels

g50c 2 50 550 50
g10n 2 10 550 50
Coil20 20 1024 1440 40
Text 2 7511 1946 50
Uspst 10 256 2007 50
Iris 3 4 150 45
VOC 5 6 384 65
Wine 3 13 178 18
WDBC 2 30 569 50

Table 3
Classification Rates (%) on the Small Datasets.

Method G50 Coil20 Text Uspst Iris VOC Wine WDBC

SVM 86.56 73.66 81.20 75.07 90.90 70.22 69.06 93.58
TSVMLight 90.14 71.93 92.53 72.28 90.19 71.47 69.69 93.58
TSVMLDS 94.60 90.07 85.52 81.57 96.55 80.62 70.56 95.32
TSVMCCCP 87.86 71.41 84.79 70.11 90.65 79.28 70.69 95.59
WELLSVM 90.04 67.81 88.64 72.14 92.49 73.89 67.56 93.55
RTSVM 94.72 71.41 83.67 74.83 91.93 73.98 69.44 95.32
RTSVMLDS 92.22 91.17 82.55 82.16 95.35 79.44 69.37 94.95

-3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

5

Fig. 4. Normally distributed synthetic data.

Table 1
Classification Rates (%) on the Synthetic Dataset.

Method Clean Data 10% 20% 30% 40% 50%

SVM 94 90 88 83 85 49
TSVMLight 94 91 91 89 90 37
TSVMLDS 93 93 92 92 93 28
TSVMCCCP 94 91 86 83 86 44
WELLSVM 80 72 72 72 71 41
RTSVM 93 93 93 93 93 73

6 Courtesy of Eydea Recognition Ltd, www.eyedea.cz
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size 60×40 pixels. We trained 2048-dimensional feature descriptor
using a Convolutional Neural Network (CNN) with 7 convolution and 2
fully connected layers. The CNN was trained by MatConvNet toolbox
[43] to classify the face into 12 age-gender categories (males/0–
10 years, female/0–10 years, male/11–20 years, …). The last layer
was then replaced by a specialized linear classifier trained to recognize
only the gender.

As a baseline we trained linear SVM from 3000 labeled examples.
Then, we used additional ≈18,000 unlabeled images to train the
transductive learning methods. The results are summarized in
Table 5. The proposed RTSVM achieves the best result followed by
TSVMCCCP. WELLSVM is the worst performing method, its accuracy
is even lower than accuracy of SVM.

3.3.3. Epsilon dataset experiments
Epsilon dataset (downloaded from https://www.csie.ntu.edu.

tw~cjlinlibsvmtoolsdatasets) includes 2000-dimensional samples of
two classes. There are 400 K samples in the training set and 100 K

samples in the test set. We used training set as labeled data and test set
unlabeled data in our experiments, so the transductive methods were
run on a data with size 0.5 million which is very large. Therefore, we
could not get results with TSVMCCCP method since it did not return
any solution in 10 days. The accuracies are given in Table 6. The
proposed method achieves the best accuracy followed by WELLSVM.
The accuracies of all tested methods are very close.

3.3.4. SensIT vehicle dataset experiments
SensIT Vehicle dataset (downloaded from https://www.csie.ntu.

edu.tw~cjlinlibsvmtoolsdatasets) includes 100-dimensional samples of
three classes. There are 78,823 samples in the training set and 19,705
samples in the test set. We used the training set as labeled data and test
set unlabeled data in our experiments as before. The accuracies are
given in Table 7. TSVMCCCP achieved the best accuracy followed by
RTSVM. In terms of the speed, the training time of the proposed
method is 27.7 min whereas the training times of WELLSVM and
TSVMCCCP are respectively 35.3 min and 256.3 min. So, the proposed
method is the most efficient one.

3.3.5. MNIST experiments
MNIST dataset includes hand-written images of 10-digit classes.

There are 60 K samples in the training set and 10 K samples in the test
set. By using a similar setting as in [11], we subsampled 1000 labeled
samples per class from the training and used the remaining 50 K
samples as unlabeled data. Accuracies are computed by using the test
samples that are not used during training. The results are given in
Table 8. The proposed RTSVM method achieves the best accuracy. It is
also the most efficient one in terms of training time: it is 1.6 times

Fig. 5. Some selected images from Cifar10 dataset.

Table 4
Classification Rates on Cifar10 Dataset.

Method Accuracy (%)

SVM 52.31 ± 0.4
TSVMCCCP –

WELLSVM 54.82 ± 0.7

RTSVM 53.13 ± 0.6
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faster than WELLSVM and 258 times faster than TSVMCCCP.
WELLSVM is the worst performing method.

3.4. Comparison of training time

Here we conducted experiments on a synthetic binary dataset to
compare the training times of the transductive learning algorithms. To

this end, we created 100-dimensional data samples drawn from a
Gaussian distribution with the axis-aligned standard deviations, where
the standard deviations are chosen from a uniform distribution
between 0 and 1. Both classes have the same covariance structure
but the class means are chosen to be different to give a slight overlap
between these two classes. We used 2 K labeled samples and 8 K
unlabeled samples since some of the tested transductive methods are
not suitable for data sets with more than 10 K samples. Both accuracies

Fig. 6. Samples of male (left) and female (right) images from “in-the-wild” dataset used for gender estimation experiments.

Table 5
Classification accuracy of the gender estimation on a collection of “in-the-wild” images.

Method Accuracy (%)

SVM 89.61 ± 0.86

TSVMCCCP 90.14 ± 0.64

WELLSVM 82.37 ± 2.38

RTSVM 91.09 ± 1.54

Table 6
Classification Rates on Epsilon Dataset.

Method Accuracy (%)

SVM 89.75
TSVMCCCP – –

WELLSVM 89.78

RTSVM 89.83

Table 7
Classification Rates on SensIT Vehicle Dataset.

Method Accuracy (%)

SVM 80.19

TSVMCCCP 82.04
WELLSVM 81.01
RTSVM 81.85

Table 8
Classification Rates on MNIST Digit Dataset.

Method Accuracy (%)

SVM 90.92
TSVMCCCP 91.03
WELLSVM 84.37
RTSVM 91.23
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and training times (in terms of seconds) are given in Table 9. All tests
are conducted on a workstation using 2.60 GHz Intel Xeon CPU and
256 GB RAM. Our proposed RTSVM method is the most efficient one
in terms of both accuracy and training time. WELLSVM yields the
worst accuracy, but it is the second fastest method. TSVMLight is the
slowest method in terms of the training time. It should be noted that
the proposed RTSVM, WELLSVM and TSVMCCCP are the only
methods that are practical for larger data sets and the proposed
method is approximately 7.5 times faster than WELLSVM and 75.4
times faster than TSVMCCCP.

4. Conclusion

In this work, we introduced a robust and fast transductive SVM
classifier that can scale well with large-scale data. To this end, we

replaced the Hinge loss with the robust Ramp loss that suppresses the
influence of outlying points. The resulting optimization problem is non-
convex, but we used concave-convex procedure to solve the problem
since it can be decomposed into a concave and convex parts. In contrast
to [11], we considered the primal space and the solved the optimization
problem with SG method. This enabled us to apply the proposed
classifier to large-scale data easily.

The classification accuracies of the proposed method were similar
to the best performing tested transductive SVMmethods for clean data,
but our classifier significantly outperformed all other tested classifiers
for noisy data. We also successfully applied our classifier to larger data
sets where the application of other transductive SVM classifiers was not
feasible. Lastly, we have observed that an embedding of samples using
local neighborhood information significantly improves accuracies of
transductive SVMs for some data sets. Therefore, including an addi-
tional term which forces to preserve local neighborhood relations
among samples into the optimization problem of transductive SVMs
may yield to better results. As a future work, we are planning to work
on this problem.
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Appendix A. Derivation of the dual RTSVM classifier

Consider that we are given a set of L labeled training samples L Φ yx= {( ( ), ),1 1 Φ yx…, ( ( ), )}L L , x ∈ IRd , y ∈ {+1, − 1} and an unlabeled set of U
vectors U Φ Φx x= { ( ), …, ( )}L L U+1 + . We augment the original unlabeled data as

y i L L U y i L U L U Φ Φ i L U L Ux x= + 1, ∈ [ + 1, …, + ], = − 1, ∈ [ + + 1, …, + 2 ], ( ) = ( ), ∈ [ + + 1, …, + 2 ].i i i i U− (19)

By using the definition,

H t t ξ ξ ξ t( ) = max(0, 1 − ) = min s. t. ≥ 0, ≥ 1 − ,1 (20)

the convex optimization problem given in (13) can be re-written as

∑ ∑ ∑ ∑ ∑C ξ C ξ β y Φ b
U

Φ b
L

y y Φ b

ξ i L U ξ i L U

w w x w x w xarg min 1
2

+ + * + ( ( ) + )s. t. 1 ( ( ) + ) = 1 . ( ( ) + )
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(21)

To derive the dual, we introduce the Lagrangian variables

⎛
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where α ν, ≥ 0i i for i ≥ 1. The optimality conditions yield

∑ ∑ ∑y α β Φ α
U

Φ
b

y α β α
ξ

α C i L

ξ
α C i L L U

w
0 w x x∂L
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= → = ( − ) ( ) − ( ) ∂L
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(23)

For simplification, we define a new sample

∑Φ
U

Φx x( ) = 1 ( )
i L

L U

i0
= +1

+

(24)

with corresponding label y = 10 and β = 00 . Then, by defining

∑ y α β Φw x= ( − ) ( ),
i

L U

i i i i
=0

+2

(25)

Table 9
Classification Rates on Synthetic Gaussian Dataset.

Method Accuracy (%) Training Time sec( )

TSVMLight 86.29 11192
TSVMLDS 80.00 1521
TSVMCCCP 86.34 2867
WELLSVM 75.33 285
RTSVM 86.55 38
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the convex optimization problem in (21) can be written as the following constrained quadratic programming problem similar to the SVM dual
optimization problem

⎛
⎝
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∑

y y α β α β Φ Φ α α
L

y α C i L

α C i L L U y α β

x xarg min 1
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(26)

where the operator . defines the inner product. If we define ζ y= i for i L U1 ≤ ≤ + 2 and ζ L y= (1/ ) ∑i
L

i0 =1 and define the kernel matrixK such that

K Φ Φx x= ( ), ( )ij i j (27)

and

α y α β= ( − ),͠ i i i i (28)

the optimization problem given in (26) can be re-written in a more compact form as

∑α α ζ α y α C i L β y α C β i L L U αKarg min 1
2

− s. t. 0 ≤ ≤ , ∀ ∈ [1, …, ], − ≤ ≤ * − , ∀ ∈ [ + 1, …, + 2 ], = 0.͠ ͠ ͠∼ ∼ ∼
α

i i i i i i
i

L U

i
⊤ ⊤

=0

+2

(29)

It should be noted that only the bounds in (29) on the α͠i have to be adjusted after each update of β. To extend the method to the nonlinear case, we
just have to replace the inner products with the defined kernel functions, i.e., k Φ Φx x x x( , ) = ( ) ( )i j i j .

Once we find the α͠i coefficients by SMO, we compute the hyperplane normal by using (25). Then, the hyperplane bias parameter b can be
obtained by using constraints as follows

i L α C y Φ bw x∀ ∈ [1, …, ], 0 < < ⇒ ( ( ) + ) = 1,i i i
⊤ (30)

or

i L L U α C y Φ bw x∀ ∈ [ + 1, …, + 2 ], 0 < < * ⇒ ( ( ) + ) = 1.i i i
⊤ (31)
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