
JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 1

Best Fitting Hyperplanes for Classification
Hakan Cevikalp, Member, IEEE

Abstract—In this paper, we propose novel methods that are more suitable than classical large-margin classifiers for open set
recognition and object detection tasks. The proposed methods use the best fitting hyperplanes approach, and the main idea
is to find the best fitting hyperplanes such that each hyperplane is close to the samples of one of the classes and is as far
as possible from the other class samples. To this end, we propose two different classifiers: The first classifier solves a convex
quadratic optimization problem, but negative samples can lie on one side of the best fitting hyperplane. The second classifier,
however, allows the negative samples to lie on both sides of the fitting hyperplane by using concave-convex procedure. Both
methods are extended to the nonlinear case by using the kernel trick. In contrast to the existing hyperplane fitting classifiers in
the literature, our proposed methods are suitable for large-scale problems, and they return sparse solutions. The experiments
on several databases show that the proposed methods typically outperform other hyperplane fitting classifiers, and they work as
good as the SVM classifier in classical recognition tasks. However, the proposed methods significantly outperform SVM in open
set recognition and object detection tasks.

Index Terms—best fitting hyperlane classifier, open set recognition, large margin classifier, kernel methods, support vector
machines.

F

1 INTRODUCTION

Large margin classifiers have been successfully used in
many fields including computer vision, text analysis, bio-
metrics and bioinformatics. The prototypical method of
this type, the Support Vector Machine (SVM) [1] finds
a linear hyperplane in feature space that maximizes the
“margin” - the Euclidean distance between the hyperplane
and the closest training samples of each class. The resulting
optimization task requires the minimization of a convex
quadratic function subject to linear inequality constraints,
and this problem can be efficiently solved by various meth-
ods [2,3,4,5]. The solution is sparse in the sense that, once
the closest points (so-called support vectors) have been
found, it depends only on them. Because SVM classifiers
try to ensure the widest possible margin for error, the
resulting classifiers have very good practical performance.
However, SVMs are not perfect. Roughly speaking, the
setting for which they were designed is one where the
classes can be modeled as non-overlapping convex clouds
in a feature space, which can thus be separated using affine
hyperplanes. Approximating each class with a convex hull
may be problematic in that it can seriously underestimate
the true extent of the classes involved. Therefore, new
maximum margin classifiers, which approximate classes
with other convex class models, have been introduced. The
maximum margin affine hull case is studied in [6]. This
method is a special case of the Least Squares [7] and Proxi-
mal [8] SVMs, in which disjoint affine hulls of two classes
lie on two parallel hyperplanes generated such that each

• H. Cevikalp is with the Electrical and Electronics Engineering Depart-
ment, Machine Learning and Computer Vision Laboratory, Eskisehir
Osmangazi University Eskisehir, Turkey.
E-mail: hakan.cevikalp@gmail.com

hyperplane is closest to the affine hull of the corresponding
class and two hyperplanes are as far apart as possible. The
Minimax Probability Machine [9] and its variants [10] are
alternative large margin classifiers that use hyper-ellipsoids
to approximate classes. Recently, we proposed a new large-
margin classifier [11] that approximates the classes with
hyper-disks.

Mangasarian and Wild [12] proposed the generalized
eigenvalue proximal support vector machine (GEPSVM)
classifier. GEPSVM finds two non-parallel hyperplanes (as
opposed to the parallel hyperplanes returned by the Prox-
imal SVMs and affine hull based large margin classifier)
by solving two generalized eigenvalue problems such that
each hyperplane best fits to the corresponding class samples
and, at the same time, it is as far as possible from the other
class samples. Once the best fitting hyperplanes are found,
the new samples are classified based on the minimum
distances to the returned hyperplanes. By using a similar
idea, [13] proposed the Twin Support Vector Machine
(TSVM) classifier. This classifier also aims at finding two
non-parallel hyperplanes such that each hyperplane is closer
to the samples of one of the two classes and is as far as
possible from the samples of other class. However, TSVM
solves a pair of quadratic programming (QP) problems
instead of a generalized eigenvalue problem. It has been
reported that the total training time of TSVM takes less
time than the training time of SVM classifier since TSVM
solves a pair of smaller sized QP problems instead of a large
QP problem as in SVM. Shao et al. [14] further improved
the TSVM classifier by introducing a regularization term
on the hyperplane parameters. Kumar and Gopal proposed
the least squares version of TSVM [15] and smooth TSVM
[16]. Some other extensions of TSVM can also be found
in [17,18].

Although classifiers based on the best-fitting hyperplanes

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 2

have been proposed as alternatives to the binary SVM clas-
sifier, there are better application areas of these methods in
recognition problems known as “open set recognition” [19].
In classical classification problems, it is assumed that all
testing classes are known at training time. However, in more
realistic applications, samples may come from unknown
classes during testing time. Margin-based classifiers, such
as SVM or affine hull based classifiers seek to maximize
the distance between the known class samples and the
decision boundary. Regions far from the known data (called
open space in [19]) are also assigned to the known classes,
although we do not have a good basis for assigning labels
to these regions. As a result, these classifiers may largely
fail during testing when there are samples coming from
unknown classes. This is illustrated in Fig. 1. On the other
hand, as we show in this study, the classifiers using the best
fitting hyperplanes are more appropriate for these types of
applications. They are also more suitable than large margin
classifiers for visual object detection tasks, in which there
are a limited number of object class samples, whereas there
are millions of negative samples coming from thousands of
different classes [20,21].

The classifiers using the best fitting hyperplane models
have wider application areas compared to the large-margin
classifiers. However, the current methods in the literature
are not perfect. More precisely, there are two major limi-
tations of the hyperplane fitting classifiers, GEPSVM and
TSVM: As a first limitation, these classifiers are not suitable
for large-scale classification problems. Kernel GEPSVM
requires eigen-decomposition on (n+1)×(n+1) matrices,
where n is the number of all samples in the training set.
Similarly, kernel TSVM requires taking the inverse of a
(n + 1) × (n + 1) matrix. For small sized classification
problems, it is reported that the training times of GEPSVM
and TSVM take less time compared to the training time of
the SVM classifier. However, for large-scale problems, it
is difficult (most of the time, impossible) to fit those large
matrices into memory and operate on them. The second
limitation is related to the sparsity of the solution. As
opposed to the SVM classifier, the solution returned by
GEPSVM or TSVM is not sparse, i.e., all training samples
become support vectors. Therefore, the testing times of
those classifiers are much slower compared to the testing
time of SVM.

In this paper, we introduce novel classifiers that use the
best fitting hyperplane approach. Our methods do not have
the limitations of both GEPSVM and TSVMs. In particular,
the proposed methods are suitable for large-scale classifi-
cation problems, and they always return sparse solutions.
They are also better suited for open set recognition and
visual object detection problems as demonstrated in the
experiments. The rest of the paper is organized as follows.
In Section 2, we give related methods and discuss their
limitations. Section 3 introduces the proposed methods.
Section 4 presents our experimental results, and Section
5 concludes the paper.

Fig. 1. The separating hyperplane S returned by the SVM
classifier separates people and dog classes. All samples
under the separating hyperplane are assigned to the dog
class. When there are test samples coming from the un-
known classes, such as chair and fish, these samples will be
erroneously assigned to the dog class with high confidence
scores. Adding another parallel hyperplane H helps to local-
ize dog class samples better, and misclassifications can be
reduced.

2 RELATED WORK

Here, we briefly describe two related best fitting hyperplane
classification methods, and discuss their limitations.

2.1 Generalized Eigenvalue Proximal Support
Vector Machine (GEPSVM) Classifier

This method searches for two nonparallel hyperplanes such
that each hyperplane is close to the samples of one of
the two classes and as far as possible from the other
class samples. Let data samples belonging to the positive
(+1) and negative (-1) classes be represented by matrices
A ∈ IRn+×d and B ∈ IRn−×d , respectively. Here, n+(n−)
denotes the number of positive (negative) samples, and d
is the dimensionality of the input space. The GEPSVM
classifier [12] returns two hyperplanes in IRd

w>+x + b+ = 0, w>−x + b− = 0,

where the first hyperplane is closest to the samples in
the positive class and furthest from the samples in the
negative class, while the second hyperplane is closest to the
samples in the negative class and furthest from the samples
in the positive class. To compute the first hyperplane,
characterized by (w+, b+), the method minimizes the sum
of the squares of L2 (Euclidean) distances between each of
the samples of the positive class to the hyperplane divided
by the squares of L2 distances between each of the samples
of the negative class to the hyperplane. This leads to the
following optimization problem

arg min
w+,b+,‖w+‖=1

‖Aw+ + e+b+‖2 + δ(‖w+‖2 + b2+)

‖Bw+ + e−b+‖2
, (1)

where δ is a user-set regularization constant, and e+(e−) is
a column vector of ones with appropriate dimension for the
positive (negative) class. Let G = [A e+]>[A e+] + δI,

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 3

H = [B e−]>[B e−], and z =
(w+

b+

)
. In this case,

optimization problem (1) can be re-expressed as

arg min
z

z>Gz

z>Hz
. (2)

The solution of this problem reduces to finding the eigen-
vector corresponding to the smallest eigenvalue of the
generalized eigenvalue problem, Gz = λHz, and renor-
malizing it to find (w+, b+). To find the second hyperplane,
(w−, b−), the roles of A and B in the optimization problem
(1) are interchanged, and all steps are repeated. Once the
hyperplanes are found, test samples are classified based on
the minimum distances to the returned hyperplanes. The
details of the kernelization procedure can be found in [12].

In the nonlinear case, the method requires eigen-
decomposition on (n + 1) × (n + 1) matrices, where
n = n+ + n− is the total number of samples. Thus, the
method is not suitable for large-scale problems. The method
also does not return sparse solutions, and kernel evaluations
against all samples in the training set are required during
the testing of a single test example. This reduces the real-
time efficiency of the method. Lastly, since GEPSVM uses
the squares of L2 distances, its generalization accuracy
significantly drops when there are outliers in the training
set, as we observed in [20].

2.2 Twin Support Vector Machine (TSVM) Classi-
fier

Similar to GEPSVM, the TSVM classifier [13] also
searches for two non-parallel hyperplanes such that each
hyperplane is closer to the samples of one of the two
classes and as far as possible from the other class samples.
However, fitting hyperplanes are obtained by solving the
following pair of convex quadratic programming problems

arg min
w+,b+,ξ

1

2
(Aw+ + e+b+)>(Aw+ + e+b+) + C−e

>
−ξ

s.t. − (Bw+ + e−b+) + ξ ≥ e−, ξ ≥ 0,
(3)

and

arg min
w−,b−,ξ

1

2
(Bw− + e−b−)>(Bw− + e−b−) + C+e

>
+ξ

s.t. (Aw− + e+b−) + ξ ≥ e+, ξ ≥ 0,
(4)

where C+ and C− are user defined parameters that control
the weight of the errors associated to the samples’ violated
constraints. Let H = [A e+], G = [B e−], and
u =

(w+

b+

)
. Then, the dual of the first optimization problem

becomes

arg min
α

1

2
α>G(H>H)−1G>α− e>−α

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n.

(5)

Once the solution of this quadratic programming problem
is found, the first fitting hyperplane is obtained by using

u = −(H>H + δI)−1Gα. (6)

The second fitting hyperplane is also obtained by the same
procedure by interchanging the matrices A and B. Test
samples are classified based on the minimum distances to
the returned hyperplanes. The details of the kernelization
procedure can be found in [13].

As seen in the optimization problems in (3) and (4), the
TSVM classifier does not allow negative samples to lie on
both sides of the fitting hyperplanes. Instead, the negative
samples are forced to lie to the left of the fitting hyperplane
(below the hyperplane in (3)), whereas the positive samples
are forced to lie to the right of the hyperplane (above the
hyperplane in (4)), separated from the fitting hyperplane by
a distance of at least 1/||w+(−)||. Allowing further class
samples to lie only on one side of the hyperplane is a
limitation because there are many classification problems in
which one class’s samples are surrounded by a diffuse sea
of other classes’ samples. In addition, the nonlinear TSVM
classifier requires taking the inverses of (n+ 1)× (n+ 1)
matrices, where n = n+ + n− is the total number of
samples. Thus, the method is not suitable for large-scale
problems as in the GEPSVM classifier. The method also
does not return sparse solutions.

3 METHOD
We propose two classification methods that use the best
fitting hyperplanes: the One-Sided Best Fitting Hyper-
plane Classifier (1S-BFHC) and the Two-Sided Best Fit-
ting Hyperplane Classifier (2S-BFHC). The first method
allows the negative samples to lie only on one side of
the fitting hyperplane, and it requires solving a convex
quadratic optimization problem. The second method allows
the negative samples to lie on both sides of the hyperplane,
and it requires solving a more complicated non-convex
optimization problem.

3.1 One-Sided Best Fitting Hyperplane Classifier
(1S-BFHC)
Similar to the hyperplane fitting classifiers in the literature,
our first proposed method also searches for the best fitting
hyperplanes such that each hyperplane is closer to the
samples of one of the classes and far from the other
classes’ samples. We first proposed this method for face
detection and focused on a single best fitting separating
hyperplane [20]. Let x be the sample’s feature vector and let
w>+ + b+ = 0 be the equation of the best fitting hyperplane
for the positive class samples. In this case, finding the best
fitting discriminative hyperplane problem can be formulated
as the following convex quadratic programming problem

arg min
w+,b+,ξ≥0

1

2
||w+||2 + C+

∑
i

(ξi + ξ∗i) + C−
∑
j

ξj

s.t. w>+xi + b+ ≤ ∆ + ξi,

w>+xi + b+ ≥ −∆− ξ∗i ,
w>+xj + b+ ≥ ∆ + 1− ξj , i ∈ I+, j ∈ I−,

(7)
where C+(C−) is a user defined parameter that controls the
weight of the errors associated with the positive (negative)

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 4

samples, I+(I−) is the set including indices of the positive
(negative) samples, and ∆ is a constant that can be set
to a value larger than zero (we typically set it to a
value between 0 and 1). With this formulation, we are
constraining the positive class samples to lie between two
parallel hyperplanes w>+x+b+ = ∆ and w>+x+b+ = −∆.
The negative samples lie to the right of the hyperplane
w>+x + b+ = 1 + ∆, separated from the positive samples
by a margin of at least 1/||w+||. Therefore, our method
also allows the negative class samples to lie only on one
side of the hyperplane as in TSVM, which is a limitation
as described before. Positive slack variables, ξi, ξ∗i ,ξj , are
introduced for the samples violating the constraints.

To derive the dual, we consider the Lagrangian

L(w+, b+, ξ,α+,α
∗
+,α−,κ+,κ

∗
+,κ−) =

1

2
||w+||2+C+∑

i

(ξi + ξ∗i) +C−
∑
j

ξj +
∑
i

α+i(w
>
+xi + b+−∆− ξi)

−
∑
i

α∗+i(w
>
+xi + b+ + ∆ + ξ∗i)−

∑
j

α−j(w
>
+xi + b+

−∆− 1 + ξj)−
∑
i

κ+iξi −
∑
i

κ∗+iξ
∗
i −

∑
j

κ−jξj ,

where α+, α∗+, α−, κ+, κ∗+, κ− ≥ 0. The Lagrangian,
L, has to be maximized with respect to α+, α∗+, α−, κ+,
κ∗+, κ−, and minimized with respect to w+, b+, ξ. The
optimality conditions yield

∂L

∂w+
= 0→ w+ =

∑
i

(α∗+i − α+i)xi +
∑
j

α−jxj ,

(8)
∂L

∂b+
= 0→

∑
i

(α∗+i − α+i) +
∑
j

α−j = 0,

∂L

∂ξi
= 0→ 0 ≤ α+i ≤ C+, i ∈ I+,

∂L

∂ξ∗i
= 0→ 0 ≤ α∗+i ≤ C+, i ∈ I+,

∂L

∂ξj
= 0→ 0 ≤ α−j ≤ C−, j ∈ I−.

Let X = [X+ − X+ X−] be the matrix of training
samples, where X+ is the matrix whose columns are
the positive samples and X− is the matrix with negative

samples. By defining α =

(
α∗+
α+
α−

)
, the dual becomes

arg min
α

1

2
α>Hα + c>α

s.t.
∑
i

(α∗+i − α+i) +
∑
j

α−j = 0,

0 ≤ α+i, α
∗
+i ≤ C+, 0 ≤ α−j ≤ C−, i ∈ I+, j ∈ I−,

(9)

where H = X>X and c =

(
∆e+

∆e+

−(∆+1)e−

)
. This is a

convex-quadratic programming problem that can be solved
by any quadratic program solver. Once α is found, the

normal of the hyperplane can be found by using (8), and
the offset b+ of the hyperplane can be computed by using
the constraints given in the primal problem (7) for the
samples with Lagrange coefficients 0 < α+i, α

∗
+i < C+,

0 < α−j < C−. This formulation resulted in a more robust
discriminating hyperplane compared to the least squares
based GEPSVM in our experiments in [20], most likely
due to the high-dimensionality of the feature space.

The second fitting hyperplane is also obtained by the
same procedure by interchanging the roles of positive
and negative samples. Once the best fitting hyperplanes
are found, test samples are classified based on the mini-
mum distances to the returned hyperplanes. For multi-class
classification problems with K classes, we find a fitting
hyperplane (wi, bi), i = 1, . . . ,K, for each class in the
training set, and a new test sample is classified by using
the decision function

g(xtest) = arg min
i=1,...,K

(
∣∣w>i xtest + bi

∣∣ /||wi||). (10)

The proposed method can be extended to the nonlinear
case by using the kernel trick. Notice that the objective
function of the convex QP problem in (9) can be written
in terms of the dot products of the sample pairs. Thus,
we replace all 〈xi,xj〉 = x>i xj with the kernel func-
tion k(xi,xj) = 〈φ(xi), φ(xj)〉 = φ(xi)

>φ(xj) where
φ : IRd → = is the mapping function from the input space
to the feature space =.

There are several advantages of our proposed method
compared to the GEPSVM and TSVM classifiers. First of
all, the quadratic optimization problem given in (9) is very
similar to the SVM formulation, and it can be efficiently
solved by using Sequential Minimal Optimization [2]. More
precisely, it is not necessary to construct the full Hessian
matrix: only the Hessians of the active sets of samples need
to be considered in each iteration. Therefore, our proposed
method is suitable for large-scale applications. Second, the
solution returned by the optimization problem in (9) is
sparse, i.e., most of the αi coefficients are zero.

3.2 Two-Sided Best Fitting Hyperplane Classifier
(2S-BFHC)
This method also searches for the best fitting hyperplanes
such that each hyperplane is closer to the samples of one of
the classes and far from the other samples. As opposed to
the first proposed method, this method allows the negative
samples to lie on both sides of the fitting hyperplanes,
separated from the positive samples with a margin of at
least 2∆/||w+||, as illustrated in Fig. 2, where ∆ is a user
defined constant that can be set between 0 and 1. However,
this problem is no longer convex, and it is typically difficult
to solve for large-scale data. To solve this non-convex
problem for large-scale data, we employ concave-convex
procedure [22].

Let us define the function we will use for label assign-
ment as being of the form

fθ(x) = w>+x + b+, (11)

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 5

where θ = (w+, b+) includes the parameters that define
the best fitting hyperplane for the positive class samples.
In the proposed method, we constrain positive samples to
lie between two parallel hyperplanes, w>+x + b+ = 1−∆
and w>+x+ b+ = −1 + ∆. To implement this goal, we use
the symmetric Ramp Loss cost function (shown in Fig. 3)
defined as

Jpos(t) = Rpos(t) +Rpos(−t), (12)

where Rpos(t) = min(1 − s,max(0,−1 + ∆ − t)) is the
so-called “Ramp Loss” function [23] illustrated in Fig. 4,
where −1 < s ≤ 0 is a parameter that must be set by the
user. As shown in the figure, the Ramp Loss function can be
written as the sum of the convex Hinge loss and a concave
loss function (or as the difference between two convex
Hinge losses), i.e., Rpos(t) = H−1+∆(t) − Hs−2+∆(t),
where Ha(t) = max(0, a − t) is the classical Hinge loss
function. The Ramp loss function can be seen as a “clipped”
version of the Hinge loss, and the parameter s controls
where we clip the Ramp loss. We set it to s = −0.20 in
our experiments.

The negative samples are forced to lie outside of the
hyperplane shaped slabs, and they are separated from the
positive samples with a margin of at least 2∆/||w+||. Thus,
the constraints for the negative samples become |w>+ +
b+| > 1+∆. To implement this, we use another Symmetric
Ramp loss (shown in Fig. 5) defined as

Jneg(t) = Rneg(t) +Rneg(−t), (13)

where Rneg(t) = min(1 + ∆ − s,max(0, 1 + ∆ − t)),
illustrated in Fig. 4. Similar to the previous case, this Ramp
Loss function can be written as the sum of the convex
Hinge loss and a concave loss function, i.e., Rneg(t) =
H1+∆(t) − Hs(t). For this loss function, the s parameter
controls the wideness of the flat part of the symmetric

Fig. 2. In the proposed method, positive class samples
(shown with red triangles) lie between two parallel hyper-
planes characterized by w>+x+ b+ = 1−∆ and w>+x+ b+ =
−1+∆. The negative samples shown with blue circles can lie
on both sides of the fitting hyperplane (the fitting hyperplane,
w>+x + b+ = 0, is shown with the dashed line), and they are
separated from the positive samples with a margin of at least
2∆/||w+|| in the separable case.

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Illustration of the cost function, Jpos(t) = Rpos(t) +
Rpos(−t), of the positive samples. Rpos(t) = H−1+∆(t) −
Hs−2+∆(t) can be written as the sum of the convex Hinge
loss and a concave loss function. ∆ is set to 0.3 and s =
−0.20.

component of the symmetric Ramp Loss plotted in Fig.
4.

To use the Symmetric Ramp loss functions defined for
positive and negative samples, each sample in the training
set appears as two examples labeled with both negative and
positive classes. More precisely, if we let n+ be the number
of positive samples and n− be the number of negative
samples under the assumption that the positive and negative
samples are ordered, then we create the new samples as
follows

yi = + 1, i ∈ [1, . . . , n+] ,

yi = − 1, i ∈ [n+ + 1, . . . , 2n+] ,

xi = xi−n+
, i ∈ [n+ + 1, . . . , 2n+] ,

yi = − 1, i ∈ [2n+ + 1, . . . , 2n+ + n−] ,

yi = + 1, i ∈ [2n+ + n− + 1, . . . , 2n+ + 2n−] ,

xi = xi−n− , i ∈ [2n+ + n− + 1, . . . , 2n+ + 2n−] .

In this case, our total cost function can be written as

J(θ) =
1

2
||w+||2 + C+

2n+∑
i=1

Rpos(yifθ(xi))

+ C−

2n++2n−∑
i=2n++1

Rneg(yifθ(xi))

By using the equations Rpos(t) = H−1+∆(t)−Hs−2+∆(t)
and Rneg(t) = H1+∆(t)−Hs(t), the above cost function
can be written as

J(θ) = Jconvex(θ) + Jconcave(θ), (14)

where

Jconvex(θ) =
1

2
||w+||2 + C+

2n+∑
i=1

H−1+∆(yifθ(xi))

+ C−

2n++2n−∑
i=2n++1

H1+∆(yifθ(xi)),

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 6

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

Rpos(t) H−1+∆(t) −Hs−2+∆(t)

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Rneg(t) H1+∆(t) −Hs(t)

Fig. 4. Illustrations of the Ramp Loss functions, Rpos(t) = min(1 − s,max(0,−1 + ∆ − t)) (top left figure) and Rneg(t) =
min(1 + ∆− s,max(0, 1 + ∆− t)) (bottom left). Each loss can be written as the sum of the convex Hinge loss (center) and the
concave loss (right), i.e., Rpos(t) = H−1+∆(t)−Hs−2+∆(t) and Rneg(t) = H1+∆(t)−Hs(t), where Ha(t) = max(0, a− t) is
the classical Hinge loss. Here, the parameters are set to ∆ = 0.3 and s = −0.20.

and

Jconcave(θ) = −C+

2n+∑
i=1

Hs−2+∆(yifθ(xi))

− C−
2n++2n−∑
i=2n++1

Hs(yifθ(xi)).

Because the cost function (14) can be decomposed into
a convex and a concave part, we can apply concave-
convex procedure (CCCP) to solve the problem. The CCCP
solves this non-convex optimization problem by an iterative
procedure where each iteration approximates the concave
part by its tangent and minimizes the resulting convex
function as given in Algorithm 1. The convergence of
CCCP has been proven in [22]. It should be noted that
the convex optimization problem that constitutes the core
of the CCCP algorithm can be solved by using efficient
convex algorithms.

Algorithm 1 The Concave-Convex Procedure

Initialize θ0

repeat
θt+1 = argmin

θ
(Jconvex(θ) + J ′concave(θ

t)θ)

until convergence of θt

Now, to simplify the first order approximation of the

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 5. The Symmetric Ramp Loss function, Jneg(t) =
Rneg(t) + Rneg(−t), for negative samples. The parameter s
is set to -0.20.

concave part, let us define

βi = yi
∂Jconcave(θ)

∂fθ(xi)

=

{
C+ if yifθ(xi) < s− 2 + ∆ and 1 ≤ i ≤ 2n+

C− if yifθ(xi) < s and 2n+ + 1 ≤ i ≤ 2n+ + 2n−
(15)

After some standard derivations shown in Appendix A
(given as supplementary material), the method can be
summarized as in Algorithm 2.

Note that the convex part of the algorithm becomes a

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 7

Algorithm 2 Two Sided Best Fitting Hyperplane Classifier

Initialize θ0 = (w0
+, b

0
+)

Compute

β0
i = yi

∂Jconcave(θ)

∂fθ(xi)
=

{
C+ if yifθ0(xi) < s− 2 + ∆ and 1 ≤ i ≤ 2n+

C− if yifθ0(xi) < s and 2n+ + 1 ≤ i ≤ 2n+ + 2n−

repeat
• Solve the following convex QP problem

arg min
h

2n++2n−∑
i=1

2n++2n−∑
j=1

hihj 〈xi,xj〉+ (1−∆)

2n+∑
i=1

yihi − (1 + ∆)

2n++2n−∑
i=2n++1

yihi

s.t.
2n++2n−∑

i=1

hi = 0; −βti ≤ yihi ≤ C+ − βti , 1 ≤ i ≤ 2n+;

− βti ≤ yihi ≤ C− − βti , 2n+ + 1 ≤ i ≤ 2n+ + 2n−.

(16)

• Compute wt+1
+ and bt+1

+ as described in Appendix B.
• Compute

βt+1
i =

{
C+ if yifθt+1(xi) < s− 2 + ∆ and 1 ≤ i ≤ 2n+

C− if yifθt+1(xi) < s and 2n+ + 1 ≤ i ≤ 2n+ + 2n−

until ||wt+1
+ −wt

+|| ≤ ε1 or ||βt+1 − βt|| ≤ ε2, where ε1 and ε2 are some pre-defined small thresholds.

convex quadratic optimization with equality and inequal-
ity constraints, and it can be efficiently solved by using
Sequential Minimal Optimization (SMO) for large-scale
data. The method usually takes 3-5 iterations to converge
to a solution based on the initialization of the algorithm.
It should be noted that only the bounds on Lagrange
coefficients hi have to be adjusted after each update of
β. Another advantage of the proposed method is that the
solution returned by the optimization problem is sparse, i.e.,
most of the hi coefficients are zero. Therefore, 2S-BFHC
is more suitable than GEPSVM or TSVM for real-time
classification applications where the speed is important. The
second fitting hyperplane is also obtained by the same pro-
cedure by interchanging the roles of positive and negative
samples as before. Once the best fitting hyperplanes are
found, test samples are classified based on the minimum
distances to the returned hyperplanes using (10). As in
the previous 1S-BFHC method, this method can also be
extended to the nonlinear case by using the kernel trick
since the QP problem in Algorithm 2 can be written in
terms of inner product of samples.

3.2.1 Initialization
Because the objective function is non-convex, the initial-
ization of the best fitting hyperplane is very important
(the returned solution will be a local minimum). For the
synthetic and low-dimensional datasets used in our ex-
periments, initialization with the hyperplane returned by
GEPSVM or random initializations produced good results.
However, as the dimensionality is increased, GEPSVM
produced very poor results and thus initialization by using
GEPSVM failed to produce good results. Therefore, we
initialized the best fitting hyperplane by using the hy-

perplanes returned by the proposed 1S-BFHC or SVM.
Since these methods only allow the negative samples to
lie on one side of the hyperplane, the proposed 2S-BFHC
classifier also returned the best fitting hyperplanes, where
the negative samples typically fall on one side of the fitting
hyperplane. Therefore, we searched for other hyperplanes
for initialization. To this end, we proposed two alternatives.
In the first approach, we approximated the positive samples
by an affine hull (affine subspace) and used the so-called
“common vector” [24] that gives the minimum distance
from the origin to the affine hull, as illustrated in Fig. 6.
This method works only for high-dimensional data samples
where the dimensionality is higher than the total number
of samples in a class. Note that when the data samples are
projected onto the common vector, they all collapse to the
same point. Thus, the hyperplane, using this vector as its
normal, behaves like a perfect fitting hyperplane on which
all positive class samples lie. The common vector of the
positive class samples can be found by using

xcom = µ−UU>µ, (17)

where µ is the mean of the samples in the positive class
and U is the basis for the span of centered examples{
x1 − µ, x2 − µ, . . . ,xn+

− µ
}

. U can be found by trun-
cated SVD of centered samples or eigen-decomposition
on the covariance matrix in the noisy case or Gram-
Schmidt decomposition of centered samples in the noise-
free case. If the dimensionality is not higher than the
number of samples, U must be formed by using some of the
most significant eigenvectors corresponding to the largest
eigenvalues.

It should be noted that the common vector is obtained
by using only the samples belonging to the positive class.

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 8

Fig. 6. The common vector determines the minimum dis-
tance from the origin to the affine hull of the samples. All
points on an affine hull collapse to the same point when they
are projected onto the common vector, and thus the common
vector can be seen as the normal of an affine hull.

To obtain a common vector sensitive to the negative-
class samples, one may use discriminative common vectors
[25,26,27,28]. In this case, U is obtained from all class
samples where each sample of a class is subtracted from
its corresponding class center. More precisely, U is now
the basis for the span of the samples

{
x1

1 − µ1, x
1
2 − µ1, . . . ,x

i
j − µi, . . . ,x

K
nK
− µK

}
,
(18)

where xij represents the j-th sample of the i-th class,
and µi is the mean of all samples in the i-th class. The
discriminative common vector is also found by using (17),
and samples in each class collapse onto their corresponding
point as before (in that way, there will be K different points
for each class in the projected space). We obtained the
best results by initializing the best fitting hyperplane with
discriminative common vectors when the dimensionality is
too high compared to the total number of samples in the
training set.

3.2.2 Discussion on Cost Functions and Parameters

In the 2S-BFHC method, positive samples lie between two
parallel hyperplanes, and the distance between these hyper-
planes is given by 2(1−∆)/||w+||. In a similar manner, the
distance between positive and negative samples is at least
2∆/||w+||. In the proposed method, we set the best value
of ∆ by using a validation set. The values of ∆ closer
to 1 indicate that a linear hyperplane approximates the
positive class samples well and the best fitting hyperplane is
further from the negative samples (and the classes are well
separated). Alternately, the values of ∆ close to 0 indicate
that positive and negative classes samples are close to each
other, and it is difficult to separate them.

An alternative approach might be to let the algorithm
automatically determine the best value of ∆. This can be
performed by adding the ∆ term in the objective function
as a parameter that must be maximized since bigger values
of ∆ indicate better separability. In this case, the objective

function becomes

arg min
(w+,b+,∆)

1

2
||w+||2 −H∆ + C+

2n+∑
i=1

Rpos(yifθ(xi))

+ C−

2n++2n−∑
i=2n++1

Rneg(yifθ(xi)),

where H is the weight of the ∆ parameter that must be set
by the user. After applying the similar steps given in the
Appendix A, the dual of the convex optimization problem
becomes

arg min
h

2n++2n−∑
i=1

2n++2n−∑
j=1

hihj 〈xi,xj〉+

2n+∑
i=1

yihi

−
2n++2n−∑
i=2n++1

yihi

s.t.
2n++2n−∑

i=1

hi = 0;

2n++2n−∑
i=1

yihi ≥ H −
2n++2n−∑

i=1

βi,

−βi ≤ yihi ≤ C+ − βi, 1 ≤ i ≤ 2n+;

−βi ≤ yihi ≤ C− − βi, 2n+ + 1 ≤ i ≤ 2n+ + 2n−.
(19)

There are two differences compared to our initial convex
optimization problem given in Algorithm 2. First, the linear
coefficient vector in the objective function changes. Second,
an additional inequality constraint appears in the quadratic
optimization problem. From Karush-Kuhn-Tucker (KKT)
conditions, ∆ > 0 implies that the inequality constraint
becomes an equality. Therefore, the parameter H behaves
like a lower bound on the fraction of support vectors.
This is expected because the ∆ term is related to both
the margin between positive and negative samples and
the distance between the two parallel hyperplanes where
the positive class samples lie. In our experiments, we
preferred to use the convex optimization given in Algorithm
2 since the training time was shorter (current fast quadratic
programming solvers only allow equality constraints with
lower and upper bounds on the Lagrange coefficients), and
we did not observe a significant performance difference
between those two formulations.

For positive samples, we use the non-convex cost func-
tion plotted in Fig. 3. One may also use the following
convex cost function for positive samples

Rpos(t) = arg max(|t| − (1−∆), 0). (20)

As shown in the Fig. 7, this cost function can be written
as the sum of two Hinge losses. Incorporating this cost
function in the proposed method yields a slightly different
algorithm. However, it is not robust against the outliers
compared to the non-convex cost function we used in our
method, and it did not offer any improvements in terms of
the accuracy or speed (In fact, the non-convex cost typically
yielded better results because it is more robust to outliers.

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 9

Similar findings are reported in [29] and [30]). One may
also adopt some robust regression functions such as Tukey
loss [31] for positive samples. Similar to our proposed
robust loss function, Tukey loss is also robust to outliers
and non-convex. However, it is computationally expensive
compared to our proposed loss function.

Fig. 7. The convex loss function for positive samples,
Rpos(t) = arg max(|t| − (1−∆), 0). It can also be written as
the sum of two Hinge losses,Rpos(t) = H1+∆(t)+H1+∆(−t).

4 EXPERIMENTS

We tested the proposed methods1, 1S-BFHC and 2S-BFHC,
on both synthetic and real databases to assess their per-
formance, and we compared our results to those obtained
by the related classification methods including Generalized
Eigenvalue Proximal Support Vector Machine (GEPSVM),
Twin Support Vector Machines (TSVMs), SVM and robust
SVMs [29]. The One-Against-Rest (OAR) regime was used
for multi-class classification problems. For the nonlinear
(kernelized) classifiers, we only used the Gaussian kernels.

4.1 Experiments on Synthetic Data
We first tested the proposed methods on a synthetic data.
Here, we consider an object detection scenario where
the positive class samples are surrounded by the negative
samples. To this end, we created two-dimensional normally
distributed data, plotted in Fig. 8. The positive class has a
mean of µ = (0

0), and x and y dimensions are uncorrelated
with corresponding standard deviations of 0.1 and 0.9,
respectively. The positive class samples are surrounded with
negative samples having the same covariance structure but
different means of µ =

(−1.5
0

)
and µ = (1.5

0). Thus,
the optimal best fitting hyperplane is closer to the y-axis.
Consequently, the normal of the optimal hyperplane must
be in the direction of the x-axis.

Among all best fitting hyperplane based methods, only
the GEPSVM and our proposed 2S-BFHC methods allow
negative samples to lie on both sides of the separating
hyperplane. Thus, we compare these two methods on this
problem (all other linear fitting hyperplane methods and lin-
ear SVM will return bad results since data are not separable
by using a single hyperplane). We initialized the normal
of the best fitting separating hyperplane with w0

+ = (1
1),

1. Our software package is available at
http://mlcv.ogu.edu.tr/softwares.html. In this package, we also provide
the codes for other hyperplane fitting methods (GEPSVM and TSVM)
beside the codes for the proposed methods.

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
ci
s
io
n

GEPSVM
2S-BFHC

Fig. 8. Synthetic data created by using normal distribu-
tions. The support vectors returned by the proposed method
are denoted by circles around the samples. Our proposed
method finds a better fitting hyperplane (its normal vector
is shown by the black line) compared to the GEPSVM’s (its
normal is the green line).

and the proposed method converged to the solution in 3
iterations and returned the solution of w+ = (1.397

0.004) and
b+ = 0.05, which is very close to the optimal solution.
The normal of the separating hyperlane returned by the
proposed method is shown with the black solid line in
Fig. 8. Our proposed method also successfully returns the
correct support vectors in the vicinity of the positive class
boundary as shown with the circles around the samples
in the figure. GEPSVM, in contrast, returned the normal
shown with the green solid line in Fig. 8. For quantitative
comparison, we created the same amount of test data (with
the same covariance structure but closer means to increase
the overlap between positive and negative classes) and
computed the Average Precision (AP) scores obtained from
the precision-recall curves. The proposed method achieves
0.923, and GEPSVM achieves 0.918.

4.2 Experiments on Visual Object Detection and
Classification
4.2.1 Face Detection
For face detection, we collected 12500 subimages of frontal
faces from the web for training. The images are rescaled
and aligned to a resolution of 35 × 28. For the neg-
ative set, we randomly collected 40000 windows from
images without faces. We used Local Binary Patterns
(LBP)+Histograms of Oriented Gradients (HOG) as visual
features. Classifiers trained with initial samples were used
to scan a set of thousands of images to collect both false
negatives and false positives. These hard examples were
added to the training set and classifiers are retrained. The
final size of the training set is over 200K, which can be
considered as large-scale data.

We tested linear classifiers on 2845 image FDDB (Face
Detection Data set and Benchmark) [32]. To measure the
accuracy, we used the PASCAL VOC metric. In this metric,
detections are considered as true or false based on the

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 10

TABLE 1
AP Scores (%) on the FDDB Dataset.

Methods AP Scores
GEPSVM 29.16
SVM 37.60
Robust SVM 62.50
1S-BFHC 70.50
2S-BFHC 73.26
Viola & Jones 67.14
Kalal et al. 66.25
Cevikalp & Triggs 74.10

overlap with ground-truth bounding boxes. The overlap
between the bounding boxes, R returned by the classifiers,
and the ground truth box Q, is computed as area|Q∩R|

area|Q∪R| . In
our experiments, bounding boxes with an overlap of 45%
or greater are considered as true positives. We then report
the average precision (AP) given in Table 2 for the whole
precision-recall curves plotted in Fig. 9. In addition, we
plotted ROC curves to compare our results to the ones re-
ported at (http://vis-www.cs.umass.edu/fddb/results.html).
As a comparison, we also report the accuracies obtained by
cascade face detector of Viola&Jones [33], face detector of
Kalal et al. [34] and cascade detector of Cevikalp&Triggs
[21]. We could not test TSVM classifier because of large
training set size. Our proposed 2S-BFHC classifier achieves
the second best result after the cascade detector of Ce-
vikalp&Triggs [21]. The proposed 1S-BFHC is third best
performing method. GEPSVM and SVM produce very bad
results. SVM classifier failed for face detection owing to the
fact that many false positives lie above the separating hy-
perplane far from the separating hyperplane (see Appendix
C for illustrative examples). These false positives have
high confidence scores which in turn significantly decreases
precision. Using Robust SVM formulation significantly
improves the SVM performance from 37.6% to 62.50%.
The improvement is clearly shown in both Precision-Recall
and ROC curves. But the accuracy is still behind the
accuracies of our proposed classifiers.

4.2.2 Pedestrian Detection

We trained and tested a series of detectors using 1S-BFHC,
2S-BFHC, SVM and robust SVM classifiers on Inria Person
dataset [35] with identitical setting for each. We used the
latent training methodology of Felzenszwalb et al. [36] and
trained a pair of roots without parts. The roots are initialized
with applying k-means clustering to mirror-image pairs.
We used HOG features as in [36]: 8 × 8 pixel cells with
window steps of 8 pixels and pyramid scales spaced by
a factor of 1.07. Table 2 shows the resulting accuracies.
2S-BFHC detector achieves the best result among those
trained followed by linear SVM detector. As opposed to
the face detection, robust SVM detector performs poorly
and it yields approximately 2% lower accuracy than SVM
detector.

TABLE 2
AP Scores (%) on the INRIA Person Dataset.

Methods AP Scores
SVM 80.4
Robust SVM 78.3
1S-BFHC 78.5
2S-BFHC 82.6

4.2.3 ILSVRC2013 Object Detection
The ILSVRC2013 detection dataset contains images of
everyday scenes with annotation of all full and partial
instances of 200 object categories. We test our detectors
on 10 categories that are carefully selected from both
easy and difficult classes. The tested classes are airplane,
bee, bicycle, bow tie, butterfly, camel, car, coffee maker,
tennis ball and tv/monitor. We first split images into two
groups based on the aspect ratio of their annotated bounding
boxes. Then, we applied k-means clustering to divide object
images into four classes for each group. So, we had 8 root
detectors in total. We used HOG features and latent training
methodology as before. The results are shown in Fig. 10.
Among tested 3 methods, 1S-BFHC detector achieves the
best results for 6 classes and 2S-BFHC detector achieves
the best results for the remaining 4 classes. On the average,
2S-BFHC, 1S-BFHC and SVM respectively yields %14.14,
%14.01 and %11.34. So, the detector using 2S-BFHC wins
with a slight edge in front of 1S-BFHC detector.

0

5

10

15

20

25

30

35

SVM

1S-BFHC

2S-BFHC

Fig. 10. AP Scores (%) on Selected ImageNet Classes.

4.2.4 Experiments on PASCAL VOC 2007 Dataset
We tested the proposed method on PASCAL VOC 2007
visual object detection and classification tasks. For detec-
tion, we used the state-of-art detector of Girshick et al
[37,38] using region proposals and CNN (convolutional
neural network) features. Briefly, this detector has three
stages where the first stage returns region proposals, the
second stage extracts 4096 dimensional CNN features,
and the last stage includes a set of class-specific linear
SVMs. Linear SVM classifiers are trained with negative
hard mining since the training set size is too large to fit
in memory. We refer readers to [37,38] for more details

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

1S-BFHC
2S-BFHC
GEPSVM
SVM
RobustSVM
Viola & Jones
Kalal et al.
Cevikalp & Triggs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

1S-BFHC
2S-BFHC
GEPSVM
SVM
RobustSVM
Viola & Jones
Kalal et al.
Cevikalp & Triggs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

1S-BFHC
2S-BFHC
GEPSVM
SVM
RobustSVM
Viola & Jones
Kalal et al.
Cevikalp & Triggs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

1S-BFHC
2S-BFHC
GEPSVM
SVM
RobustSVM
Viola & Jones
Kalal et al.
Cevikalp & Triggs

(a) (b)

Fig. 9. (a) Precision-Recall and (b) ROC curves for FDDD dataset.

on the detector. We re-trained the linear SVM classifiers
using pre-trained CNN models and obtained a mAP of
54.12% without using bounding box regression, which is
very close to 54.20% reported in [37]. By using the same
features we trained the proposed best fitting hyperplane
classifiers by using negative hard mining. In order to speed-
up the training phase, at each iteration, we collected the
hardest 40K negative examples coming from 50 images.
We initialized 2S-BFHC classifier using linear SVM at the
beginning. The proposed 2S-BFHC method achieves a mAP
of 53.83% which is very close to the one obtained by linear
SVM, but 1S-BFHC performs badly and returns 50.76%
accuracy as seen in Table 3.

For classification task, we again used 4096-dimensional
CNN features. To extract CNN features, all images are
first resized to 256×256 and then we used pre-trained
ILSVRC2012 Caffe model [39] of the CNN described by
Krizhevsky et al. [40]. We did not apply fine-tuning and
linear SVM classifier is used to initialize the 2S-BFHC.
Results are given in Table 3. The proposed 2S-BFHC
achieves the best accuracies for all classes. As opposed to
the object detection, we obtained a significant improvement
over linear SVMs. The performance difference is very
significant especially on bottle, chair, potted-plant and sofa
classes (the performance gain is always larger than 5% for
these classes).

4.2.5 Experiments on the Caltech-256 and USPS
Digit Datasets
Here we test our classifiers on Caltech-256
(http://www.vision.caltech.edu/Image Datasets/Caltech256/)
and USPS (retrieved from http://www.csie.ntu.edu.tw/∼
cjlin/libsvmtools/datasets/multiclass.html#usps) datasets.
Caltech-256 is a visual object recognition dataset
containing images belonging to 256 object categories.
There is also an additional background class, making the
total number of classes 257. The images have background
clutter and significant intra-class and scale variability.
The USPS dataset contains 9298 16×16 gray-scale of
hand-written digits, with 7291 reserved for training and

TABLE 4
Classification Rates (%) on the Caltech-256 and

USPS Digit Datasets.

Linear Methods Caltech 256 USPS
GEPSVM 13.3±0.7 55.2
SVM 37.6± 0.7 91.3
1S-BFHC 38.3± 1.0 91.8
2S-BFHC 40.1± 0.7 92.1

validation and the remaining 2007 for testing. For USPS
we use raw gray-scale values of pixels as features without
any pre-processing or feature extraction. For Caltech 256,
we follow the standard procedure and pick 60 images from
each class and split them into 30 for training and 30 for
test. Then, we reverse the role of training and test. Fisher
vector (FV) representation is used to represent images and
we used the same setup as in [41]. More precisely, we
extracted approximately 10K descriptors per image from
24 × 24 patches on a regular grid every four pixels at
5 scales. The dimensionality of the tested descriptors is
reduced to 80 by using Principal Component Analysis.
We used 6 × 106 descriptors to learn PCA projections
and 256-component Gaussian mixture model (GMM)
components. The final dimension of the image FVs is
around 164K. The results are given in Table 4 (We could
not obtain results for TSVM because of computational
complexity of training). For both datasets, the proposed
2S-BFHC yields the best result followed by 1S-BFHC.
Accuracies of GEPSVM are again low. The improvement
achieved by the 2S-BFHC over linear SVM is especially
significant for challenging Caltech-256 dataset.

4.3 Experiments on Open Set Recognition
At Introduction section, we argued that our proposed hy-
perplane fitting classifiers are better suited for open set
recognition problems because they try to approximate the
positive class samples with an hyperplane. To support this
claim, we set up an open set recognition scenario for
two datasets. First we used USPS dataset and randomly

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 12

TABLE 3
Average Precision scores (%) on PASCAL VOC 2007 detection and classification datasets.

Detection A
er

op
la

ne

B
ic

yc
le

B
ir

d

B
oa

t

B
ot

tle

B
us

C
ar

C
at

C
ha

ir

C
ow

D
in

in
g

Ta
bl

e

D
og

H
or

se

M
ot

or
bi

ke

Pe
rs

on

Po
tte

d
Pl

an
t

Sh
ee

p

So
fa

Tr
ai

n

T
V

M
on

ito
r

A
ve

ra
ge

SVM 64.3 69.6 50.2 41.9 31.9 62.5 70.9 60.4 32.7 58.5 46.3 56.2 60.4 66.7 54.1 31.6 52.9 48.9 57.7 64.8 54.12
1S-BFHC 61.7 65.2 47.1 35.2 28.3 62.4 67.1 56.5 29.6 55.9 43.9 53.4 55.2 65.5 50.8 28.1 48.5 45.0 54.6 61.5 50.76
2S-BFHC 64.3 69.1 49.7 40.8 32.0 62.4 70.4 60.7 33.0 57.5 48.1 56.3 61.0 66.2 54.1 31.0 53.4 47.1 57.8 64.9 53.83
Classification
SVM 87.0 75.7 81.7 80.4 31.2 63.6 80.4 79.1 47.1 58.1 64.2 74.0 81.0 73.0 87.4 41.3 68.5 50.6 86.3 61.4 68.60
1S-BFHC 85.9 74.0 79.9 77.4 30.3 63.0 78.5 78.0 46.2 56.6 62.0 72.0 79.7 71.9 83.2 39.2 63.1 51.0 84.4 59.5 66.77
2S-BFHC 88.4 76.8 82.3 80.9 37.6 65.8 82.7 80.2 56.6 59.7 67.0 77.7 82.3 74.2 89.3 47.3 70.2 57.3 86.5 64.1 71.34

TABLE 5
Classification Rates (%) on the Open Set USPS

Dataset.
Linear Methods AP Scores
GEPSVM 40.51
SVM 61.90
1S-BFHC 66.01
2S-BFHC 67.81

chose 3 positive classes. For each positive class, training
dataset is created by using all training samples belonging
to the positive classes. During testing, we used the samples
belonging to the positive classes in the allocated test set as
well as test samples belonging to other 7 classes that are
not used for training. Then we compute AP scores from
Precision-Recall curves for each class and take the average
as the final score. This procedure is repeated 10 times and
the final accuracies are the averages of accuracies obtained
in each trial. The results are given in Table 5. The best
accuracy is obtained by the proposed 2S-BFHC initialized
with 1S-BFHC. The proposed 1S-BFHC comes the second
followed by the SVM. If we initialize the 2S-BFHC with
SVM, which performs poorly compared to 1S-BFHC, the
accuracy is 62.73%.

For the second set of open set recognition experiments,
we have chosen three classes (aeroplanes, cars, and faces)
having more than 120 samples per class from the Caltech
101 database. Then, we obtained bag of words models by
using images coming from only these three classes. We
used 90 images for training the classifiers and 30 images
for testing. During testing, we use the test samples of
three classes and randomly choose 2000 samples from the
remaining classes for testing. To measure the accuracy, we
use AP scores as before. We tested only linear proposed
classifiers and SVM since other best fitting algorithms
perform poorly on this problem. We set the dimensionality
of the image histograms to different values between 50 and
10000 to demonstrate the performance change as a function
of the dimensionality. These experiments are repeated 5
times by choosing random samples for training and testing,
and the final accuracies are averages over these 5 trials
in Table 6. The best classification accuracies are typically

obtained by using the proposed 2S-BFHC. In this setup, the
proposed method significantly outperforms SVM when the
dimensions of the image feature histograms are 50, 7000
and 10000, whereas the accuracies are similar when the
dimensions are set to 500 and 1000. It is expected that 2S-
BFHC will outperform both SVM and 1S-BFHC classifiers
in open set recognition setup when the image histogram
sizes are small (see the case for dimensionality is equal to
50). It is because of the fact the positive class samples can-
not be separated from the other samples with a single hyper-
plane since they typically lie in specific regions surrounded
by a diffuse sea of so-called background samples. However,
it was surprising that both of our proposed hyperplane
fitting classifiers achieved better results than SVM when
the dimensionality of the image histograms is very high.
We observed the remarkable fact that SVM also behaves
like an hyperplane fitting classifier for high-dimensional
spaces. Majority of the training samples (around 55% of
the whole training data) lie on the supporting hyperplanes
as shown in Fig. 11, which illustrates the signed distances
from samples to the separating/best-fitting hyperplanes for
dimension 7000 (the figure is plotted for only one class
trained during OAR regime). Since these samples become
support vectors, the common belief that “only a few of the
training samples become support vectors” does not hold
anymore for high-dimensional spaces.

5 CONCLUSION

Classifiers using the best fitting hyperplanes are becom-
ing increasingly popular owing to the fact that they are
better suited for open set recognition and object detection
problems. However, existing hyperplane fitting algorithms
have two major limitations: They are not suitable for large-
scale classification problems since one has to perform
eigen-decomposition on the resulting large matrices or the
inverses of those large matrices must be found. Exist-
ing classifiers are also not efficient in terms of real-time
performance because the classifiers do not return sparse
solutions. In this paper, we have proposed novel hyperplane
fitting classifiers that do not have the limitations mentioned
above. More precisely, the proposed classifiers use the
SMO algorithm, which does not require constructing large

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 13

(a) (b) (c)

Fig. 11. Signed distances from the training samples to the separating/best-fitting hyperplanes: (a) distances for SVM, (b)
distances for 1S-BFHC, b) distances for 2S-BFHC.

TABLE 6
Classification Rates (%) as a Function of

Dimensionality for the Open Set Recognition Setup.

Dimension 50
SVM 9.34, σ = 2.4
1S-BFHC 8.93, σ = 1.1
2S-BFHC 14.07, σ = 1.6

Dimension 500
SVM 24.81, σ = 3.3
1S-BFHC 24.27, σ = 5.7
2S-BFHC 25.04, σ = 5.9

Dimension 1000
SVM 25.40, σ = 4.9
1S-BFHC 24.88, σ = 3.7
2S-BFHC 24.05, σ = 4.1

Dimension 7000
SVM 37.35, σ = 3.0
1S-BFHC 42.00, σ = 6.2
2S-BFHC 43.76, σ = 6.3

Dimension 10000
SVM 39.65, σ = 2.9
1S-BFHC 42.33, σ = 5.9
2S-BFHC 44.19, σ = 5.6

Hessian matrices, making the methods suitable for large-
scale problems. Moreover, the returned solutions are sparse
similar to SVMs, and thus the proposed methods are
efficient in terms of testing time.

We tested the classification accuracies of the proposed
methods on both synthetic and real-world classification
problems. The proposed methods typically outperformed
other best-fitting hyperplane classifiers in most of the cases,
and they produced comparable results to the SVM classifier
in classical classification tasks. Other hyperplane fitting
classifiers such as GEPSVM and TSVM performed poorly
on most challenging data sets where the number of classes
is large or the dimensionality of the input space is high.
On the other hand, the proposed methods significantly
outperformed SVMs for the open set recognition and object
detection tasks. Especially, performance difference is too
significant (around 36%) for face detection. These results
verify that our prosed best fitting hyperplane methods are
more suitable than SVMs for open set recognition and
object detection problems.

ACKNOWLEDGMENTS

This work was funded by the Scientific and Technologi-
cal Research Council of Turkey (TUBİTAK) under Grant

number EEEAG-109E279.

REFERENCES

[1] C. Cortes and V. Vapnik. Support vector networks.
Machine Learning, 20:273–297, 1995.

[2] J. Platt. Fast training of support vector machines
using sequential minimal optimization. In Advances
in Kernel Methods: Support Vector Learning, pages
185–208. MIT Press, Cambridge, 1999.

[3] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set
selection using second order information for training
svm. Journal of Machine Learning Research, 6:1889–
1918, 2005.

[4] T. Joachims. Making large-scale support vector
machine learning practical. In Advances in Kernel
Methods: Support Vector Learning, pages 169–184.
MIT Press, Cambridge, 1999.

[5] I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core
vector machines: Fast svm training on very large data
sets. Journal of Machine Learning Research, 6:363–
392, 2005.

[6] H. Cevikalp, B. Triggs, H. S. Yavuz, Y. Kucuk,
M. Kucuk, and A. Barkana. Large margin classifiers
based on affine hulls. Neurocomputing, 73:3160–
3168, 2010.

[7] J. A. K. Suykens and J. Vandewalle. Least squares
support vector machine classifiers. Neural Processing
Letters, 9:293–300, 1999.

[8] G. Fung and O. L. Mangasarian. Proximal support
vector machine classifiers. In Proc. of Knowledge
Discovery and Data Mining, pages 77–86, 2001.

[9] G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya,
and M. I. Jordan. A robust minimax approach to
classification. Journal of Machine Learning Research,
3:555–582, 2003.

[10] Z. Deng, F. L. Chung, and S. Wang. A new min-
imax probability based classifier using fuzzy hyper-
ellipsoid. In Proc. of International Joint Conference
on Neural Networks, 2007.

[11] H. Cevikalp and B. Triggs. Hyperdisk based large
margin classifier. Pattern Recognition, 46:1523–1531,
2013.

JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY 2016 14

[12] O. L. Mangasarian and E. W. Wild. Multisurface
proximal support vcetor machine classification via
generalized eigenvalues. IEEE T-PAMI, 28:69–74,
2006.

[13] Jayadeva, R. Khemchandani, and S. Chandra. Twin
support vector machines for pattern classification.
IEEE T-PAMI, 29:905–910, 2007.

[14] Y.H. Shao, C. H. Zhang, X. B. Wang, and N. Y. Deng.
Improvements on twin support vector machines. IEEE
Transactions on Neural Networks, 22:962–968, 2011.

[15] M. A. Kumar and M. Gopal. Least squares twin sup-
port vector machines fpr pattern classification. Expert
Systems with Applications, 36:7535–7543, 2009.

[16] M. A. Kumar and M. Gopal. Application of smoothing
tehcnique on twin support vector machines. Pattern
Recognition Letters, 29:1842–1848, 2008.

[17] S. Gao, Q. Ye, and N. Ye. 1-norm least squares
twin support vectorm machines. Neurocomputing,
74:3590–3597, 2011.

[18] X. Peng. Tpmsvm: A novel twin parametric-margin
support vector machine for pattern recognition. Pat-
tern Recognition, 44:2678–2692, 2011.

[19] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E.
Boult. Towards open set recognition. IEEE T-PAMI,
35:1757–1772, 2013.

[20] H. Cevikalp, B. Triggs, and V. Franc. Face and
landmark detection by using cascade of classifiers.
In IEEE International Conference on Automatic Face
and Gesture Recognition, 2013.

[21] H. Cevikalp and B. Triggs. Efficient object detection
using cascades of nearest convex model classifiers.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[22] A. L. Yuille and A. Rangarajan. The concave-convex
procedure (cccp). In Advances in Neural Information
Processing Systems, 2002.

[23] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large
scale transductive svms. Journal of Machine Learning
Research, 7:1687–1712, 2006.

[24] M. B. Gulmezoglu, V. Dzhafarov, and A. Barkana.
The common vector approach and its relation to
principal component analysis. IEEE Trans. Speech
Audio Proc., 9:655–662, 2001.

[25] H. Cevikalp, M. Neamtu, M. Wilkes, and A. Barkana.
Discriminative common vectors for face recognition.
IEEE T-PAMI, 27:4–13, 2005.

[26] H. Cevikalp and M. Wilkes. Face recognition by
using discriminative common vectors. In International
Conference on Pattern Recognition, 2004.

[27] H. Cevikalp, M. Neamtu, and M. Wilkes. Discrimina-
tive common vector method with kernels. IEEE Trans-
actions on Neural Networks, 17:1550–1565, 2006.

[28] H. Cevikalp, M. Neamtu, and A. Barkana. The kernel
common vector method: A novel nonlinear subspace
classifier for pattern recognition. IEEE Transactions
on Systems, Mand and Cybernetics, Part B: Cybernet-
ics, 37:937–951, 2007.

[29] S. Ertekin, L. Bottou, and C. L. Giles. Nonconvex

online support vector machines. IEEE Transactions
on on Pattern Analysis and Machine Intelligence,
33:368–381, 2011.

[30] R. Collobert, F. Sinz, J. Weston, and L. Bottou.
Trading convexity for scalability. In International
Conference on Machine Learning, 2006.

[31] John Fox. Robust regression: Appendix to an r and
s-plus companion to applied regression, 2002.

[32] Vidit Jain and Erik Learned-Miller. Fddb: A bench-
mark for face detection in unconstrained settings.
Technical Report UM-CS-2010-009, University of
Massachusetts, Amherst, 2010.

[33] P. Viola and M. J. Jones. Robust real-time face
detection. IJCV, 57(2):137–154, 2004.

[34] Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted
sampling for large-scale boosting. In BMVC, 2008.

[35] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. In CVPR, 2005.

[36] P. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan. Object detection with discriminatively
trained part based models. IEEE T-PAMI, 32(9),
September 2010.

[37] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and
semantic segmentation. In CVPR, 2014.

[38] R. Girshick, J. Donahue, T. Darrell, and J. Malik.
Region-based convoulutional networks for accurate
object detection and segmentation. IEEE T-PAMI,
38:142–158, 2015.

[39] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In NIPS, 2012.

[41] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek.
Image classification with the fisher vector: Theory and
practice. International Journal of Computer Vision,
34:1704–1716, 2013.

Hakan Cevikalp received his M.S. degree
from the Department of Electrical and Elec-
tronics Engineering, Eskisehir Osmangazi
University, Eskisehir, Turkey, in 2001 and his
Ph. D. degree from the Department of Electri-
cal Engineering and Computer Science, Van-
derbilt University, Nashville, TN, in 2005. He
is currently working as an Associate Profes-
sor at Electrical and Electronics Engineering
department of Eskisehir Osmangazi Univer-
sity, Eskisehir, Turkey. His research interests

include pattern recognition, neural networks, image and signal pro-
cessing, optimization, and computer vision. He is a member of the
IEEE.

