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Abstract—This paper introduces a family of quasi-linear discriminants that outperform current large-margin methods in sliding window
visual object detection and open set recognition tasks. In these applications, the classification problems are both numerically
imbalanced – positive (object class) training and test windows are much rarer than negative (non-class) ones – and geometrically
asymmetric – the positive samples typically form compact, visually-coherent groups while negatives are much more diverse, including
anything at all that is not a well-centered sample from the target class. For such tasks, there is a need for discriminants whose decision
regions focus on tightly circumscribing the positive class, while still taking account of negatives in zones where the two classes overlap.
To this end, we propose a family of quasi-linear “polyhedral conic” discriminants whose positive regions are distorted L1 or L2 balls. In
addition, we also integrated the proposed classification loss into deep neural networks so that both the features and classifier can be
learned simultaneously end-to-end fashion to improve the classification accuracies. The methods have properties and run-time
complexities comparable to linear Support Vector Machines (SVMs), and they can be trained from either binary or positive-only
samples using constrained quadratic programs related to SVMs. Our experiments show that they significantly outperform linear SVMs,
deep neural networks using softmax loss function and existing one-class discriminants on a wide range of object detection, face
verification, open set recognition and conventional closed-set classification tasks.

Index Terms—Polyhedral conic classifiers, object detection, large margin classifiers, open set recognition.

F

1 INTRODUCTION

C ONVENTIONAL machine learning classifiers such as linear
Support Vector Machine (SVM) [1] and other large-margin

classifiers [2], [3], [4], [5] have been successfully used in many
fields including computer vision, text analysis, biometrics and
bioinformatics. In general, SVM classifier finds a linear hyper-
plane in feature space that maximizes the “margin” – the Euclidean
distance between the hyperplane and the closest training samples
of each class. If the data are not linearly separable, the kernel trick
is used to estimate the non-linear decision boundaries, but the
kernelized SVM classifier becomes too slow for many real-time
applications such as visual object detection and tracking.

Linear SVMs and other conventional linear large-margin dis-
criminants are intended for “closed set” scenarios [6] in which
the class labels are mutually exclusive and exhaustive and every
class seen at test time is known during training. These methods
try to attribute each test sample to a class even when it has
little resemblance to the training samples of any known one –
a semantics that is fragile because it ignores the possibility that
outliers (samples with no meaningful class) and novel classes
(ones not foreseen during training) may occur at test time. In
contrast, “open set” methods [6] try to handle these issues by
rejecting test samples that do not appear to belong to any of the
known training classes. To do this, they need to estimate some
kind of inlier or validation region for each target class in addition
to the conventional inter-class decision boundaries.

Visual object detection and face verification also benefit from
discriminants that tightly constrain the positive class. In sliding-
window object detection, the discrimination problem is highly
asymmetric because the positive samples (windows that correctly
frame instances of the target class) form a variable-but-coherent
appearance class, whereas the negatives (anything at all that is not

a well framed object instance) are much more diverse. Moreover
the data is highly imbalanced in that there are many more negative
(non-object) training and test windows than positive (object) ones.
For both reasons it is useful for the discriminant to focus on tightly
bounding the positive class whereas conventional discriminants
such as SVMs treat the two classes as though they were equal,
interchangeable alternatives. Owing to the many ways in which a
window can fail to be a positive, most of the SVM support vectors
turn out to be ‘hard negatives’ and with existing feature sets it is
not unusual to find that these completely surround the positives in
feature space (c.f . the scatter plots of projected class densities in
[7], [8]). In a similar manner, face verification problems assume
images of a single individual as the positive class while the set
of images of all other possible people are treated as potential
impostors. Therefore, it is impossible to know all testing classes
during training, thus we need to estimate some kind of validation
region for each individual person of interest.

For visual object detection and verification applications as
well as for more general open set recognition tasks, there is a
need for reliable, scalable, asymmetric discriminants that focus on
modeling the positive class as a compact, coherent set surrounded
by a disparate sea of negatives. The pitfalls of not doing so are
illustrated in Fig. 1. This is for a recognition problem in which
unforeseen classes occur at run time, but object detectors face
similar issues with unforeseen kinds of hard negatives.

This paper introduces a new family of quasi-linear discrim-
inants that return compact polyhedral acceptance regions for
positive class samples based on linear sections through L1/L2

cones. By supplying tighter bounds on the positive class, this ge-
ometry systematically outperforms half-space based decision rules
such as linear SVMs in both open set recognition problems and
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Fig. 1. A decision hyperplane returned by an SVM successfully sepa-
rates its training classes, dogs (positive) and people (negative). However
it also assigns instances of new classes such as cats, horses, fish and
chairs to the dog class, sometimes with higher confidence scores than
for dogs themselves. The problem is the too large acceptance region
– SVM only tries to separate dogs and people, not to bound the dog
class. A tighter (e.g. polyhedral or ellipsoidal) decision boundary im-
proves classification, reducing mis-classifications caused by unforeseen
classes and outliers.

detection/verification problems with unforeseen hard negatives.
In fact it often improves the performance even in conventional
closed set problems especially when the number of classes is
large since the proposed classifiers are better suited for the one-
against-all classification rule. Training of the proposed classifiers
is formulated as an efficient convex program as for linear SVM,
and run times are also similar to linear SVM. Preliminary version
of this paper has appeared in [9]. This paper extends our previous
work with (1) a more detailed analysis of the recent related work
on polyhedral conic functions; (2) a more detailed description of
the proposed methods and introducing new extensions using L2

norm in addition to L1 norm; (3) introduction of a novel method
that finds the cone vertex and classifier parameters optimally;
(4) implementing deep neural networks using the proposed loss
function to handle different classification scenarios such as one-
class, multi-class and multi-label classification problems, and (5)
more experiments on new datasets.

Related Work: Recently, several studies introduced classifiers
(especially for object detection) that abandon the formal classi-
fication setup and adopt loss functions designed to provide tighter
modeling of the positive class. These are typically called one-
class1 classifiers and they can learn the positive class models even
by using the positive class samples only. Several methods have
been proposed in this direction. Support Vector Data Description
(SVDD) method of [10] aims to find a closed boundary around
the positive data. To this end, it finds a compact hypersphere
that includes the majority of the positive class samples. Cevikalp
and Triggs [11], [12] use a cascade of nearest convex model

1. The name “one class” is conventional. It emphasizes the origin of these
methods in density modeling and the predominant role of the positive class but
it is something of a misnomer in that negative examples usually can be, often
are, and in some formulations must be included during training.

classifiers to progressively cut out a compact, coherent positive
region from a broad sea of negative examples for face and people
detection. Scheirer et al. [6], [13] and Rudd et al. [14] introduced
classifiers for open set recognition problems where the test set
includes samples of novel classes that are not foreseen during
training. The generalized eigenvalue proximal support vector ma-
chine (GEPSVM) classifier [5] finds a hyperplane that best fits
the positive class samples while avoiding the negative samples as
far as possible. By following a similar idea, [15] proposed the
Twin Support Vector Machine (TSVM) classifier. This classifier
also finds a best fitting hyperplane but it is found by solving a
quadratic programming problem. Different variants of the best
fitting hyperplane classifiers are proposed in [16], [17].

Other approaches such as Additive Kernels [18] and Random
features [19] try to approximate kernel classifiers in a fixed-
complexity setting by explicitly mapping samples to higher-
dimensional spaces that provide nonlinear class separation circum-
scribing the positive class region. Similar to these approaches, the
proposed method can also be seen as a nonlinear classifier where
the linearly non-separable data samples are explicitly mapped to a
higher-dimensional feature space that allows the polyhedral conic
separation.

Another strategy is exemplified by the colorectal cancer de-
tector of Dundar et al. [20], which learns polyhedral acceptance
regions by jointly optimizing a set of hyperplane classifiers, each
designed to classify positives against a subgroup of the negative
samples. However the required partitioning of the negative set is
both expensive for large-scale problems and problematic if the
negatives do not naturally separate into well defined clusters, par-
ticularly as the overall performance turns out to be sensitive to both
the number and the detailed form of the partitions. Several studies
[21], [22] focused on different techniques to construct polyhedra
that approximately bound positive classes. However these methods
scale poorly with training set size, suffer from local optima or
over-fitting, or need ancillary clustering or labeling which makes
them unsuitable for large-scale applications. Manwani et al. [23]
proposed a classifier using logistic function to learn polyhedral
acceptance regions, whereas they used a perceptron-like algorithm
for the same goal in [24]. However, they form the polyhedral
acceptance regions by using intersection of several hyperplanes,
whose number must be pre-defined before training. This is a
major limitation since we do not have a-priori information on the
number of hyperplanes for most of the classification problems.
Furthermore, these methods are only tested on small datasets and
comparisons are made against a very limited number of classifiers.

Kantchelian et al. [25] proposed Convex Polytope Machine
(CPM) classifier to find polyhedral acceptance regions for large-
scale problems. As in [23], [24], they also learn a fixed amount
of linear hyperplanes for separating positive class samples from
the negatives. However, there is no guarantee that the resulting
classifier forms polyhedral acceptance regions. In fact, CPM clas-
sifier is equivalent to latent SVM training methodology of [26],
that is widely used for visual object detection problems. Latent
SVM just learns a set of linear hyperplanes separating positive
samples lying in different sub-regions of the input space from
the negatives. The resulting acceptance region is not necessarily a
polyhedral acceptance region since latent SVM does not enforce
the positives to lie in the intersection of the hyperplanes.

In contrast to these methods mentioned above, our proposed
methods have a convex formulation that ensures globally optimal
solutions, they scale efficiently to large problems, they do not
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require negative samples to be clustered, they resist over-fitting by
using a robust margin-based cost function, and there is no need to
define the number of linear hyperplanes in advance.

There are also deep learning based studies showing the im-
portance of the compact class decision boundaries in classification
problems [27], [28], [29], [30]. All these studies argue that the
accuracies of deep neural network classifiers using softmax loss
function can be significantly improved by enforcing the networks
to return more compact class decision boundaries. To this end,
[27] uses center loss function along with softmax loss to minimize
the intra-class variations while keeping the features of different
classes separable. A similar strategy is also adopted in [28], where
an additional loss term minimizing the pair-wise sample distances
in the same classes is used with softmax loss. In addition to these,
there are deep learning based distance metric learning methods
proposed to return more compact class decision boundaries by
minimizing the intra-class variations [29], [30]. As opposed to
these methods, our deep neural network classifiers using the
proposed polyhedral conic functions use a single loss function that
minimizes the intra-class variations and maximizes the inter-class
separability at the same time.

2 METHOD

We build our methods based on polyhedral conic functions defined
in [21]. We formulate the learning problem as a constrained
quadratic programming (QP) problem, which makes the method
suitable for large-scale classification. We also propose several
variants of polyhedral conic functions to estimate the positive class
regions by using different norms and extensions.

2.1 Preliminaries

Here we describe different notions of separability and make a
brief introduction to polyhedral conic separation. Assume that we
are given two nonempty sets of classes denoted by S+ (positive
class) and S− (negative class) including samples in IRd. It is
well-known that if the convex hulls of such sets do not overlap,
i.e., co(S+) ∩ co(S−) = ∅, a hyperplane separates these two
classes. In such a case, a linear SVM can be used to find the best
separating hyperplane2. Whenever two classes cannot be separated
by a hyperplane, i.e., co(S+) ∩ co(S−) 6= ∅, but the convex
hull of the positive class and the samples of negative class do not
intersect, i.e., co(S+)∩S− = ∅, they are h-polyhedrally separable
[32]. That is, there exists h hyperplanes such that the samples of
S+ are contained in a convex polyhedron (intersection of h half-
spaces) and the samples of S− are left outside the polyhedron.
[33] introduced the notion of max-min separability which can be
considered as a generalization of the h-polyhedral separability. It
was shown that if the sets S+ and S− are disjoint, then they are
max-min separable. Gasimov and Ozturk [21] defined polyhedral
conic functions which are used to construct a separation function
for the given two arbitrary finite point disjoint sets. These func-
tions are formed by using an augmented L1 norm with a linear
part added. A graph of such a function is a polyhedral cone with
a sub-level set including at the utmost an intersection of 2d half
spaces. See Fig. 2 for visualization of different separation types.

2. A best separating hyperplane can be found even if the convex hulls are
slightly overlap. The keen reader is referred to [31] for more information.

Fig. 2. Geometric interpretation of four separation types: linear, h-
polyhedral, polyhedral conic and max-min separation.

2.2 Polyhedral Conic Classifiers
Consider a classification problem with training data given in the
form {xi, yi}, i = 1, . . . , n, xi ∈ IRd, and yi ∈ {−1,+1}. We
first need the following definition from [21].

Definition 1. A function f(x) : IRd → IR is called polyhedral
conic if its graph is a cone and all its level sets

Sα =
{
x ∈ IRd : f(x) ≤ α

}
(1)

for α ∈ IR, are polyhedrons.

Let us define a polyhedral conic function (PCF) – essen-
tially projections of hyperplane sections through L1 cones –
fw,γ,c,b(x) : IR

d → IR as

f(x) = w>(x− c) + γ||x− c||1 − b, (PCF). (2)

Here x ∈ IRd is a test point, c ∈ IRd is the cone vertex, w ∈ IRd

is a weight vector and b is an offset. The term, ‖u‖1 =
∑d
i=1 |ui|

denotes the vector L1 norm and γ is a corresponding weight. The
fact that such a function defines a polyhedral cone follows from
the following Lemma [21].

Lemma 2.1. A graph of the function fw,c,γ,b(x) defined in (2) is
a polyhedral cone with a vertex at (c,−b).

In [9], we defined extended polyhedral conic function (EPCF)
as

fw,γ,c,b(x) = w>(x− c) + γ>|x− c| − b (EPCF) (3)

where |u| = (|u1|, ..., |ud|)> denotes the component-wise modu-
lus and γ ∈ IRd is a corresponding weight vector.

Our classifiers use these polyhedral conic functions to define
their acceptance regions for positives. This choice provides a
convenient family of compact and convex (for suitable weights)
region shapes for discriminating relatively well localized positive
classes from broader negative ones. It naturally allows robust
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margin-based learning, and the number of free parameters remains
modest, thus controlling both over-fitting and run times. The
proposed classifiers have decision regions f(x)< 0 for positives
and f(x)> 0 for negatives. Similarly, our margin based training
methods enforce f(x) ≤ −1 for positives and f(x) ≥ +1
for negatives. In both cases the positive region is essentially a
hyperplane-section through an L1 cone centered at c, specifically
the region x ∈ IRd in which the hyperplane z = w>(x− c)− b
lies above the L1 cone z = γ‖x − c‖1 (PCF) or the diagonally-
scaled L1 cone z = γ>|x − c| = ‖diag(γ) (x − c)‖1 (EPCF).
See Fig. 3.

Note that for PCF with b > 0, γ > 0, ‖w‖∞ < γ
(where ‖u‖∞ = maxdi=1 |ui| is the ∞ norm) and any τ , the
region f(x) < τ is convex and compact in IRd and it contains
the vertex c. Analogously, for EPCF with b > 0, γ > 0,
|wi| < γi, i = 1, ..., d, and any τ , the region f(x) < τ is
again convex and compact and it again contains c. It would be
straightforward to enforce these inequalities during learning but at
present we simply leave the decision regions free to adapt to the
training data: compact positive classes naturally tend to produce
compact acceptance regions in any case.

Geometrically, under the above constraints the resulting re-
gions are bounded octahedroids with 2d vertices, one along each
positive and negative coordinate half-axis starting from c. The
lines joining opposite vertices thus intersect at c, giving the region
a deformed but still axis-aligned octahedral “kite” shape with
overall size governed by b. In EPCF, the region widths can be
scaled independently along each axis, while in PCF they are
coupled together but a more limited form of anisotropy is still
possible.

To define margin-based classifiers over input feature vec-
tors x from this, for PCF we augment the feature vector to
x̃ ≡

(
x−c
‖x−c‖1

)
∈ IRd+1 and the weight vector to w̃ ≡

(−w
−γ
)
∈

IRd+1, and let b̃ = b. Then the PCF decision function takes
the familiar linear SVM form w̃>x̃ + b̃ > 0 for positives and
w̃>x̃ + b̃ < 0 for negatives. Similarly, for EPCF we augment the
feature vector to x̃ ≡

(
x−c
|x−c|

)
∈ IR2d and the weight vector to

w̃ ≡
(−w
−γ
)
∈ IR2d and again let b̃ = b, again giving the SVM

form w̃>x̃ + b̃ > 0 for positives, but now in 2d dimensions. The
above ∓1 margins for PCF and EPCF translate to the familiar
±1 SVM margins, allowing us to use standard SVM software
for maximum margin training3. It thus suffices to run the familiar
SVM quadratic program on the augmented feature vectors:

argmin
w̃,b̃

1
2w̃
>w̃ + C+

∑
i ξi + C−

∑
j ξj

s.t. w̃>x̃i + b̃+ ξi ≥ +1, i ∈ I+,
w̃>x̃j + b̃− ξj ≤ −1, j ∈ I−,
ξi, ξj ≥ 0,

(4)

where the I± are indexing sets for the positive and negative
training samples, the ξ’s are slack variables for the samples’ mar-
gin constraint violations, and the C± are corresponding penalty
weights.

Inserting the PCF and EPCF feature vectors into the above
training procedure respectively gives our Polyhedral Conic Clas-
sifier (PCC) and Extended Polyhedral Conic Classifier (EPCC)

3. This only holds if we agree to ignore the optional compact-convex-region
constraints ‖w‖∞ < γ (PCC) or |wi| < γi, i = 1, ..., d (EPCC).

methods. Note that despite their ostensibly linear symmetric form,
these classifiers are intrinsically asymmetric: they force the posi-
tives to lie inside, and the negatives to lie outside, polyhedral conic
regions that are typically compact and centered on the positives.
Our formulation is robust to over-fitting and it scales well because
standard SVM technology such as cutting plane methods [34] and
fast primal space solvers (e.g. [35]) can be used.

The above procedure does not attempt to optimize the position
c of the cone vertex as that would lead to a non-convex problem.
We can simply set it to a pre-specified position in the positive
training set. The mean, medoid, or coordinate-wise median of the
training positives can all be used for this with good results. We
mostly used the mean in our experiments. The intuition for using
positive class mean is that the resulting classifier assigns its highest
positive confidence scores to the samples near the cone vertex. We
also introduced a method to estimate the best cone vertex position
optimally in Section 2.3 and conducted experiments to compare
the accuracies obtained by the optimum point and the positive
class mean in Section 3.7.

One-Class EPCC (OC-EPCC): EPCC usually outperforms both
linear SVM and PCC owing to its flexibility, but its positive
acceptance regions are bounded and convex only when |wi| < γi
for all i – i.e. when the hyperplane section has a shallower
slope than every facet of the L1 cone. This sometimes fails
to hold for feature space dimensions along which the negatives
do not surround the positives on all sides. Even though such
EPCC acceptance regions are typically still much smaller than
the corresponding linear SVM ones, to ensure tighter bounding
we would like to enforce |wi| < γi, i = 1, . . . , d. Moreover, in
EPCC the∓1 margin is the only thing that fixes the overall weight
scale and hence prevents a degenerate solution, and negative data
is essential for this. To ensure that EPCC works well for open
set problems and ones with only positive samples, we need to
force its acceptance regions to stay bounded and compact. The
acceptance region has width O(b/γi) along axis i, so we need
to ensure that the γi can not shrink to zero. The easiest way to
achieve this is to replace the ±1 margin scaling with a b = 1
offset scaling and include negative cost penalties on the γi and
on the geometric width of the new positive-negative margin [0, 1]
so that these quantities will tend to increase and hence keep the
acceptance region widths small and the sets well separated. This
leads to the following “One-Class EPCC” formulation:

argmin
w,γ

λ
2w
>w + 1

n+

∑
i ξi +

1
n−

∑
j ξj − s>γ

s.t. w>(xi − c) + γ>|xi − c| − 1 ≤ ξi, i ∈ I+,
w>(xi − c) + γ>|xi − c| − 1 ≥ 1− ξj , j ∈ I−,
ξi, ξj ≥ 0. (OC-EPCC)

(5)
Here λ is a regularization weight for w and s > 0 is a user-
supplied vector of cost penalties for increasing γ. At present we
use the simple stochastic gradient (SG) method given in Algorithm
1 to solve this optimization problem. For s, we set all its entries
to the same value. Experimental results show that the accuracy
is very sensitive to the values of s. To fix λ, we tried four
values (0.01, 0.001, 0.0001, 0.00001), whereas we used five values
starting from 0.1 along with other four values used for λ to set s.
A grid search algorithm is used to determine the best values on a
small randomly sampled validation data chosen from training sets.

L2 Norm Extensions: If we use L2 norm instead of L1 norm
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Visualization of PCC classifiers for 2D synthetic data: The positive acceptance regions are ”kite-like”’ octahedroids containing the points for
which a linear hyperplane lies above an L1 cone.(a): 2D positive (yellow) and negative (blue) samples, (b)-(e): views of positive-class acceptance
regions from different angles in 3D, (f): Resulting kite-like acceptance region in 2D space.

Algorithm 1 Stochastic Gradient Based Solver for One-Class EPCC

Initialize
w1, γ1, T > 0, α0 > 0, εw > 0, εγ > 0, n+ is the number of positive examples, n− is the number of negative examples,
n = n+ + n−
Description:

for t ∈ 1, ..., T do
αt ← α0/t;
wt−1 = wt; γt−1 = γt;
for i ∈ randperm(n) do

– Compute sub-gradients

gtw =


λw
n

+ xi
n+
, if yi = 1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1) ≥ 0
λw
n
− xi

n−
, if yi = −1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1− ρt) ≥ 0
λw
n
, otherwise.

gtγ =


xi
n+
− s

n
, if yi = 1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1) ≥ 0

− xi
n−
− s

n
, if yi = −1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1− ρt) ≥ 0

− s
n
, otherwise.

– Update polyhedral cone parameters
wt ← wt − αtgtw
γt ← γt − αtgtγ

end for
if ‖wt −wt−1‖ < εw &

∥∥γt − γt−1
∥∥ < εγ , break

end for

when constructing the extended vector, i.e., x̃ ≡
(

x−c
||x−c||

)
∈

IRd+1, where ||.|| denotes the L2 (the Euclidean) norm of the
vector, we obtain a classifier that returns ellipsoidal decision
regions with the constraint that the ellipsoid is a sphere that has
been elongated in a single direction (i.e., the shape matrix of
the ellipse is the identity matrix plus a rank one update). The
center of the ellipse is also shifted from c by an amount related to
w̃. Similarly we can use squares of distances in EPCC to create
ellipsoidal decision regions, i.e. we set x̃ ≡

(
x−c
xe

)
∈ IR2d, where

xe = [xei] ∈ IRd, xei = (xi − ci)2.

2.3 Estimating Optimum Cone Vertex Point

Here, we introduce a method to estimate the best cone vertex
position and classifier parameters optimally. To this end, we first
write the cone vertex point, c, as linear combination of positive
class samples, i.e., c = Xposα, where Xpos is the matrix whose
columns are the positive class samples and α is the unknown
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vector of linear combination coefficients. In this case, EPCF given
in (3) can be written as

fw,γ,α,b(x) = w>(x−Xposα) + γ>|x−Xposα| − b. (6)

To find the best cone vertex point and the EPCC classifier param-
eters simultaneously, we need to solve the following optimization
problem

argmin
w,γ,α,b

1
2w
>w + 1

2α
>α+ C+

∑
i ξi + C−

∑
j ξj

s.t. w>(xi −Xposα) + γ>|xi −Xposα| − b− ξi ≤ −1, i ∈ I+,
w>(xj −Xposα) + γ>|xj −Xposα| − b+ ξj ≥ +1, j ∈ I−,
ξi, ξj ≥ 0.

(7)
The same optimization problem can also be used for PCC by

setting γ to a scalar value. This optimization problem differs from
(4) in the way that there are additional unknown α parameters
and the objective function includes a term to regularize these
parameters. This optimization problem is non-convex with respect
to all parameters, but it becomes convex when we fix some of
them. Therefore, we used Alternating Optimization to solve this
problem. To this end, we first set the cone vertex to an initial
value (e.g., positive class mean), and find the EPCC classifier
parameters, (w,γ, b) using linear SVM algorithm. Then, we fix
the classifier parameters, and take the derivative of the objective
function with respect to α, and find the best parameters of α
using SG algorithm. Next, the new classifier parameters are found
by using new calculated cone vertex position. This procedure is
iteratively repeated until there is no big change in parameters. The
proposed classifier converges to the optimal cone vertex point in
5-6 iterations. Section 3.7 reports some experimental results on
both synthetic and real datasets obtained by using the proposed
method. It should be noted that this classifier becomes too slow
compared to classical EPCC since we have to solve two large
optimization problems in each iteration. Therefore, we did not
attempt to estimate the best cone vertex position in the rest of the
experiments and we set it to the positive class mean.

2.4 Deep Neural Networks Using Polyhedral Conic
Classification

We integrated the proposed polyhedral conic classifier into deep
neural networks to learn features and classifier simultaneously
4. To this end, we used the recent state-of-the-art ResNet-101
architecture. It should be noted that using a single label for an
image is generally not appropriate for real-world applications, as
the majority of the images can be associated with multiple labels
to describe its semantic contents, such as objects, scenes, actions
and attributes. Therefore, we formulated the proposed polyhedral
conic function loss to handle both multi-class and multi-label
classification problems.

Now, let x̃i ≡
(

xi−cyi

|xi−cyi
|

)
∈ IR2d, (i = 1, . . . , n) is

the augmented feature vector in the last layer of the network
just before the classification layer, and yi ∈ {−1, 1}m is the
corresponding label vector with −1 indicating a negative and 1
indicating a positive class. There are m different classes to be
classified. For single label case, the label vector y includes a single

4. The software for deep neural network classifier can be reached at
https://github.com/hsaglamlar/Deep EPCC.

1 term and it may include several 1 terms when an image includes
multiple labels.

Assuming that C+
xi

and C−xi
denote the sets of indices with

positive and negative labels for x̃i, our proposed classifier solves
the following optimization problem

min
W̃

n∑
i=1

C+
xi∑

j=1

C−xi∑
k=1

H(w̃>j x̃i − w̃>k x̃i), (8)

where H(t) = max(0, 1 − t) is the classical hinge loss, and w̃j

corresponds to the j-th column of 2d × m weight matrix W̃.
It should be noted that we omitted the regularization loss term,
trace(W̃>W̃), since it is already implemented in deep neural
networks via weight decay parameter.

The cone vertex cyi must be updated in each iteration since the
feature representations of samples also change. Updating the cone
vertices in each batch using entire training data is impractical,
thus we update them in each batch by using the examples of the
existing samples in that batch. For binary classification problems,
we set the cone vertex to the mean of the positive class samples.
For multi-class (label) classification problems, ideally we should
compute the cone vertex for each class separately. But, this brings
additional computations during testing since the class vertex of
each class must be subtracted from the test examples to create
augmented test feature vectors separately. To avoid this, we used
a single common cone vertex for all classes, and it is simply set to
averages of all class samples in the current batch.

3 EXPERIMENTS

We tested the proposed polyhedral conic classifiers5 on both syn-
thetic and real datasets for object detection, face verification, open
set recognition and classical closed-set multi-class discrimination.
We also investigated whether an improvement can be obtained
by using optimized cone vertex point described at section 2.3.
We compare our results with several other linear and quasi-linear
methods like SVM, Kernel SVM using 2nd order polynomial func-
tion, 1-Sided Best Fitting Hyperplane Classifier (1S-BFHC) [16],
GEPSVM [5], one-class SVM (SVDD) [10], Additive Kernels
method [18], Convex Polytope Machine (CPM) [25]. For open set
recognition problems, we also compared the proposed methods
to 1-vs-Set Machine method of [6]. We could not test against
the polyhedral classifier of [20] as this software is not available.
For deep neural networks, we compared the proposed deep neural
network using polyhedral conic loss function to the one using
softmax loss function.

We emphasize out that our polyhedral classifiers are best
viewed as drop-in replacements for linear SVM, which our clas-
sifiers systematically outperform in the tests below regardless of
the application and the features used, with only modest increases
in memory usage and run time comparing to SVM. Kernel SVMs
and similar instance-based methods will typically have sometimes
better absolute accuracy but they are usually too slow for practical
use in applications of these kinds, except perhaps as the final
stages of classifier cascades with faster early stages such as our
methods. This applies to training too: in the face detection study
below the final training set size is about 250K and kernel SVM
algorithms like Sequential Minimal Optimization [36] struggle to
handle datasets of this scale. For this reason it was not practical to

5. Our code is available at http://mlcv.ogu.edu.tr/softwarepcc.html
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2D synthetic data

PCC-L1 EPCC-L1 OC-EPCC-L1

PCC-L2 EPCC-L2 OC-EPCC-L2

Fig. 4. 2D synthetic data and the decision boundaries returned by
the proposed classifiers. Brighter pixels in decision boundaries
correspond to higher scores.

include results for kernelized methods in the object detection tests.
But, we tested kernel SVMs in other experiments. In addition,
we also tested Additive Kernels method [18] that approximates
the kernelized methods. We report classification rates or PASCAL
VOC style Average Precision (AP) scores [37] for performance
assessment. For multi-class problems we used the one-against-rest
(OAR) approach as this worked best for all methods.

3.1 Illustrations on Synthetic Data

Fig. 4 illustrates the proposed conic classifiers on a synthetic 2D
dataset consisting of random points with the positive class being
Gaussian with mean ( 3

3 ) and axis-aligned standard deviation
( 0.1
0.9 ), while the negative class is a mixture of Gaussians with

the same standard deviation and several means surrounding the
positive one. Quantitatively, Table 1 gives empirical Average
Precisions for a 250 positive / 750 negative test set sampled from
these distributions. The PCC method using L2 norm achieves the
best result after the statistically-optimal Bayes classifier. One-
class EPCC (OC-EPCC) and one-class PCC (OC-PCC) also do
very well even though the versions tested here were trained using
positive samples alone. Linear SVM fares poorly because the
problem is not linearly separable. An Additive Kernel method that
explicitly maps the data to an 18-D feature space does better, but
not as well as our methods which only use 3 or 4 dimensional
embeddings.

TABLE 1
Average Precision (%) on the Synthetic Dataset.

Method AP Scores

Bayes Classifier 90.89

PCC-L2 90.64

EPCC-L2 88.85

EPCC-L1 86.62

OC-EPCC-L1 84.87

OC-EPCC-L2 84.26

PCC-L1 79.90

Additive Kernels 76.80

SVDD 71.14

GEPSVM 44.25

SVM 22.85

3.2 Object Detection Experiments
3.2.1 Experiments on Face Detection
We tested our classifiers on two face detection datasets, 2845
image FDDB (Face Detection Data set and Benchmark) [38],
and ESOGU6, a frontal face detection dataset that includes 667
high-resolution color images with 2042 annotated frontal faces.
Both datasets include images that contain faces appearing at a
wide range of image positions and scales, and also complex
backgrounds, occlusions and illumination variations.

Given the limitations of current publicly-available face detec-
tor training sets, we collected 20K sub-images of frontal upright
faces from the web for training. The faces were rescaled and
cropped to a resolution of 35 × 28. For the negative set we
randomly sampled 10K windows from face-free regions of the
images with complex backgrounds. The sub-images were rescaled
and cropped to size 35×28 then represented as 620-D LBP+HOG
feature vectors.

To allow a direct comparison of methods we trained several
sliding window face detectors that were identical except for the
(quasi-)linear classifiers used, testing the proposed PCC and EPCC
methods, 1S-BFHC hyperplane-fitting classifier, linear SVM, and
Additive Kernels. We used spectral clustering to partition the
positive samples into three groups and trained a single classifier
for each partition. Each initial classifiers were used to scan a
set of thousands of images to collect additional hard negatives.
Then the classifiers were retrained to create the final detector.
The final size of the training set is around 250K. The standard
sliding window approach of [39] was used for testing, stepping
the detector window by 3 pixels horizontally, 4 vertically, and
1.15 in scale and using greedy non-maximum suppression.

The PASCAL VOC metrics were used to assess accuracy: we
report Average Precision (AP), i.e., area under the precision-recall
curve. Table 2 gives Average Precision scores for tested classifiers
on the FDDB and ESOGU datasets. It also gives the corresponding
scores for three publicly-available detectors: the boosted frontal
face detector of Kalal et al. [40], the short cascade of Cevikalp
& Triggs [11], and the OpenCV Viola-Jones detector [41]. The
scores of the latter detectors are not strictly comparable because
they used different non-publicly-available training sets and multi-
stage cascades with nonlinear final stages whereas our detectors
used only a single linear stage. For FDDB dataset, our proposed

6. http://mlcvdb.ogu.edu.tr/facedetection.html
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TABLE 2
Average Precision (%) for various face detectors on the FDDB and

ESOGU Faces datasets.

Method FDDB ESOGU

EPCC-L1 71.86 89.11

EPCC-L2 65.33 72.40

PCC-L1 67.17 78.79

PCC-L2 54.25 65.30

SVM 37.60 47.66

Additive Kernels 55.70 78.70

1S-BFHC 70.5 80.0

Cevikalp-Triggs [11] 74.1 87.4

Kalal et al. [40] 66.3 79.7

Viola-Jones [41] 67.6 76.2

EPCC-L1 method achieved the second best result after cascade
detector of [11], whereas the proposed EPCC-L1 achieved the best
result on ESOGU dataset. These results are very promising since
they compare favorably to the more complex nonlinear classifiers
and they are obtained by using linear (non-kernelized) form of
the proposed classifiers. The PCC methods usually produce lower
results compared to EPCC. 1S-BFHC achieves the second best
result after EPCC-L1 for both datasets among our trained clas-
sifiers. Using L2 norm with the proposed classifiers significantly
reduces the accuracy. SVM classifier remarkably fails and gives
the worst performance, because there are many false positives that
fall to the positive side of the separating hyperplane far from the
positive samples as illustrated in Fig. 1. These false positives have
high scores, thus they significantly decrease the accuracy. Using
Additive Kernels to provide nonlinear decision boundaries is a
significant improvement over linear SVM, but its accuracy remains
lower than the proposed methods and 1S-BFHC, suggesting that
it does not manage to constrain the positive region as well as they
do.

3.2.2 Experiments on Pedestrian Detection
We trained and tested an analogous series of detectors on the
INRIA Person dataset [42], again testing linear EPCC, PCC, 1S-
BFHC, SVM and Additive Kernels with identical settings for each.
We used Felzenszwalb et al. [39] latent training methodology,
training one symmetric pair of roots without parts. The roots
were initialized by applying k-means clustering to mirror-image
pairs. We used HOG features as in [39]: 8 × 8 pixel cells
with window steps of 8 pixels and pyramid scales spaced by a
factor of 1.07. For comparison we cite the published results of
Felzenszwalb et al. [39] (linear latent SVM over HOG, using one
symmetric pair of roots, each with 8 parts – 18 filters in total, and
bounding box prediction), Hussain & Triggs [43] (a two stage,
linear then quadratic cascade based on single root latent SVM
over HOG+LBP+LTP), and Dalal & Triggs [42] (simple linear
SVM over HOG without latency, multiple roots or parts).

The resulting accuracies and testing times per image are
presented in Table 3. The EPCC-L1 detector achieves the best
results among those trained. Without having parts modeling, it
does not quite match the score of the Felzenszwalb multi-root,
multi-part detector. However, it does outperform the Hussain &
Triggs [43] method despite the Hussain & Triggs’s better features
and two stages. EPCC-L2, PCC-L2, and PCC-L1 also perform

TABLE 3
Average Precision (%) on the INRIA Person dataset.

Method AP Score (%) Run Time (s)

EPCC-L1 85.6 1.8

EPCC-L2 85.0 1.6

PCC-L1 83.6 1.8

PCC-L2 84.3 1.5

SVM 80.4 1.6

Additive Kernels 80.9 −−
1S-BFHC 78.5 1.6

Felzenszwalb [39] 86.9 3.5

Hussain-Triggs [43] 84.1 –

Dalal-Triggs [42] 75.0 –

well here. As opposed to the face detection results, there is not
a significant difference between accuracies obtained by using L1

and L2 norms. Note that despite their gains in accuracy, the run
times for EPCC and PCC are very similar to those for SVM
(and half of those for [39]), so EPCC is a promising drop-in
replacement for linear SVM here. In contrast to the face detection
results, Additive Kernels provides little improvement in accuracy
over linear SVM even though it is the slowest method tested.

TABLE 4
Object Detection Results (%) on MS COCO dataset.

Method mAP@0.5 mAP@[.5, .95]

EPCC 37.2 18.4

Fast R-CNN [44] (SVM) 35.1 17.8

3.2.3 Experiments on MS COCO
We experimented on Microsoft COCO [46] object detection
dataset released in 2014. MS COCO detection dataset includes 80
object categories with approximately 80k images in the training
set and 40k images in the validation set. We evaluate the mAP
averaged for IoU (Intersection over Union) ∈ [0.5 : 0.05 : 0.95]
(this is COCO’s standard metric denoted by mAP@[.5, .95])
and mAP@0.5 (PASCAL VOC’s metric). To test the proposed
classifier, we used a multi-stage training approach where a deep
neural network is trained to obtain CNN features in the first stage
and this is followed by the EPCC training on the extracted features.

We used Fast R-CNN [44] implementation with the setup
given in [47] which uses Region Proposals provided by [48]. Re-
gion proposals are selective search proposals around 2000 regions
per image. The deep neural network is a VGG-16 architecture fine-
tuned from a network pre-trained on ImageNet dataset. We used
the default parameters for fine-tuning which used a mini batch size
of 64, 240K iterations with a learning rate of 0.001 and then for
80K iterations with 0.0001. In the second stage, we extracted FC7
layer’s output as CNN features and then trained EPCC classifier.
We set the maximum number of negative samples to 90K per class
due to memory limitations during EPCC training. In a similar
manner, we also trained SVM classifier for comparison as in Fast
R-CNN [44]. The results are given in Table 4. The proposed EPCC
classifier improves the accuracy around 2% for mAP@0.5 and
0.6% for mAP@[.5, .95] over linear SVM. It should be noted
that our Fast R-CNN implementation using SVM achieves lower
accuracies compared to the ones given in [47]. The authors of [47]
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TABLE 5
Results for PaSC Face Verification Experiments.

One-Against-One Regime One-Against-Rest Regime

Verification Rates (%) mAP Scores (%) Verification Rates (%) mAP Scores (%)

Methods PaSC control PaSC handheld PaSC control PaSC handheld PaSC control PaSC handheld PaSC control PaSC handheld

EPCC-L1 88.94 75.20 71.00 57.15 91.47 81.99 68.07 64.47

EPCC-L2 88.54 74.46 70.22 56.59 91.63 82.13 73.82 64.49

PCC-L1 89.33 74.97 70.53 57.30 90.59 79.20 72.58 61.97

PCC-L2 86.17 75.58 67.14 56.42 91.25 80.87 72.97 63.15

SVM 86.68 74.57 69.73 56.98 78.06 71.48 58.26 51.04

Additive Kernels 86.07 70.80 67.96 53.59 88.76 76.34 64.71 59.75

CERML-EG [45] 80.11 77.37 – – – – – –

use different network parameters during fine-tuning stage since
they use 8-GPUs. In contrast, we used the default parameters
recommended for a single GPU. The accuracy difference may be
due to this factor.

3.3 Experiments on Face Verification
For face verification experiments, we used Point-and-Shoot Face
Recognition Challenge (PaSC) dataset [49]. The PaSC dataset
includes 2802 videos of 265 people carrying out simple actions.
Videos are recorded under two different settings. In our experi-
ments, we used deep CNN features of face images provided by
[45]. On PaSC, there are two video face verification experiments:
control-to-control and handheld-to-handheld experiments. In both
experiments, the target and query sets contain the same set of
videos. The task is to verify a claimed identity in the query video
by comparing with the associated target video. Since the same
1401 videos served as both the target and query sets, “same video”
comparisons are excluded as in [45], and our results are directly
comparable to the ones reported in [45] since we use the same
CNN features and test protocols.

To test methods, we follow the same testing setup as used
in [45]: we first compute the similarities between pair-wise face
videos and create a similarity matrix. Then, this matrix is used
to create ROC curves and we report the verification rate when
false accept rate is 0.01. In addition, we also report the average
precision (mAP) scores obtained from Precision-Recall curves.
For computing similarity scores, we used two different settings
to emphasize the importance of polyhedral separation. In the first
setting, we just trained a binary classifier using images of two
videos coming from target and query sets, and used the reciprocal
of returned margin, ||w̃||, as similarity score between these two
video sets. It should be noted that the classes can be easily
separated by a linear hyperplane in this setting since pair-wise
separations are considered. This setting is called as “one-against-
one setting (OAO)” since it is similar to the “one-against-one
regime” which is used to extend binary SVM classifiers to multi-
class classification. For the second setting, we combine all images
in the query set and treat it as negative class and each video in the
target set is considered as positive class. Then, we train a binary
classifier separating these two classes. The similarity matrix is
computed by finding the closest 10 samples from each video in
the query set to the separating hyperplane and taking their mean
as final distance. This setting is called as “one-against-rest setting
(OAR)”. In contrast to the first setting, the classes are imbalanced
here and it is much harder to separate the positive and combined

negative classes with a linear hyperplane anymore. So, we need
polyhedral acceptance regions for better performance.

The results are reported in Table 5 and they support our claim
that polyhedral acceptance regions are better suited for “one-
against-rest setting”. More precisely, the proposed EPCC classifier
using L2 norm achieves the best accuracies in “one-against-rest
setting”, and these accuracies are significantly higher than the
results of [45], 80.11% in control set and 77.37% in handheld
set. Moreover our best result on handheld dataset also significantly
outperforms the recent state-of-the-art result, 80.33%, of [50], and
our best result on control dataset is slightly behind the accuracy,
92.06%, in [50]. Combining all video images in “one-against-
rest setting” improves the accuracies of the proposed methods
compared to the ones obtained for “one-against-one setting”.
It is because using more negative data helps to return more
compact polyhedral acceptance regions for positive classes since
the negative class samples surround the positive class regions. In
contrast, in “one-against-one setting”, the samples of positive and
negative classes are balanced and the proposed classifiers return
looser acceptance regions, which yield to lower accuracies. As
opposed to these results, linear SVM yields higher accuracies
for OAO setting since the pair-wise classes are linearly separable
whereas the accuracies significantly drop for OAR setting since
the classes are no longer separable by a linear hyperplane in this
setting.

3.4 Visual Object Classification Experiments

3.4.1 Experiments on PASCAL VOC 2007 Dataset

We ran tests on the PASCAL 2007 Visual Object Classification
dataset using a popular Convolutional Neural Net feature set. We
ran the pre-trained ILSVRC2012 Caffe implementation [51] of
the Krizhevsky et al. [52] AlexNet CNN on images resized to
256×256, producing 4096-dimensional feature vectors for each
of the methods shown. For comparability with the literature and to
see the performance differences between tested classifiers better,
we used stock ILSVRC features without fine-tuning them on the
PASCAL dataset. The results are given in Table 6, as PASCAL
VOC Average Precision scores. The proposed methods achieve
the best accuracies along with Additive Kernels and KSVM for
most of the classes. The best performer is OC-EPCC, trained with
samples of both positive and negative classes. It significantly out-
performs a linear SVM over the same features, gaining about
4% on average and more than 5% on the classes bottle, bus,
chair, dining table, dog, potted-plant, sofa and tv monitor. Additive



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2934455, IEEE
Transactions on Pattern Analysis and Machine Intelligence

10

TABLE 6
Average Precision scores (%) on PASCAL VOC 2007 classification datasets.
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OC-EPCC-L1 85.1 79.7 82.9 81.3 36.4 69.5 83.2 80.7 57.7 61.6 70.0 79.9 83.2 74.0 90.4 51.0 73.4 58.6 84.5 66.7 72.5
EPCC-L1 87.2 80.0 83.3 80.9 35.9 66.5 83.4 80.9 56.5 59.4 68.7 78.5 82.6 73.8 90.1 49.7 71.3 57.1 86.5 66.6 72.0
PCC-L1 86.3 79.0 83.0 80.5 35.3 65.8 83.4 80.2 56.1 60.3 68.0 77.2 81.8 73.3 89.8 47.9 70.8 55.6 85.9 66.4 71.3
SVM 87.0 75.7 81.7 80.4 31.2 63.6 80.4 79.1 47.1 58.1 64.2 74.0 81.0 73.0 87.4 41.3 68.5 50.6 86.3 61.4 68.6
KSVM 83.9 77.3 82.2 81.8 38.7 69.5 81.9 79.6 57.5 60.2 69.8 79.2 79.1 71.2 89.0 52.6 73.8 59.3 84.8 69.7 72.1
Additive Kernels 86.6 78.5 83.0 81.2 35.6 68.0 82.0 81.5 51.0 63.1 65.5 76.2 82.7 74.9 88.7 47.3 72.7 54.0 86.7 64.2 71.2
1S-BFHC 85.9 74.0 79.9 77.4 30.3 63.0 78.5 78.0 46.2 56.6 62.0 72.0 79.7 71.9 83.2 39.2 63.1 51.0 84.4 59.5 66.8
GEPSVM 36.2 21.9 45.1 26.4 10.3 27.0 34.1 21.9 29.0 39.9 32.0 22.2 32.0 19.6 53.9 15.4 27.2 14.3 39.0 25.8 28.7
SVDD 65.5 32.4 25.0 26.0 21.5 31.2 37.1 48.7 28.3 23.1 17.7 25.5 39.3 31.8 58.8 12.3 21.2 18.5 59.2 25.5 32.4

Deep EPCC 96.2 91.3 91.2 89.8 63.6 84.5 89.4 91.1 68.5 84.7 81.3 90.6 90.6 89.0 92.9 69.7 84.2 73.7 91.6 81.4 84.8
Deep CNN (softmax) 93.6 89.7 90.9 88.9 60.1 83.1 88.5 91.0 68.4 84.1 79.4 90.1 90.2 88.9 94.1 66.6 83.6 73.6 91.7 81.0 83.9

Kernels improves results over linear SVM, but it uses a three-times
larger feature space. GEPSVM was the worst performer here.

In addition to these experiments, we also tested the proposed
ResNet-101 deep CNN classifier (Deep EPCC) using the proposed
EPCC loss function and compared it to the same network using
softmax loss function. It should be noted that both deep CNN
classifiers significantly improve the accuracies over the classifiers
using AlexNet CNN features. Moreover, the proposed Deep EPCC
classifier beats the one with softmax for 18 classes out of all 20
classes, and it brings around 1% improvement on the average.

3.4.2 Experiments on CIFAR-10 Dataset
Here we use CIFAR-10 dataset images7. The CIFAR-10 dataset
consists of 60K, 32×32 color images of 10 classes, with 6K
images per class. There are 50K training and 10K test samples.
We first extracted CNN features for CIFAR-10 dataset images
by using the AlexNet as in PASCAL VOC experiments. Then
we trained the proposed deep CNN networks using ResNet-101
architecture. The results are given in Table 7. As seen in the table,
the proposed Deep EPCC classifier achieves a very high accuracy
of 96.68%. It should be noted that this accuracy is very close to
the recent state-of-the-art accuracy of 97.28% reported in [53] and
it slightly beats the previous best result of 96.53% in [54]. Among
the classification methods using the stock CNN features, KSVM
achieves the highest accuracy followed by the proposed EPCC-L1

method. GEPSVM is again the worst performer.

3.4.3 Experiments on Caltech-256 & CIFAR-100 Datasets
Here we test classifiers on two multi-class visual object clas-
sification datasets: Caltech-256 and CIFAR-100 data sets. For
Caltech-256, we follow the standard procedure: pick 60 images
from each class and split them into 30 for training and 30 for
test, then, reverse the role of training and test. Fisher vector (FV)
representation is used to represent images and we used the same
setup as in [55]. More precisely, we extracted approximately 10K
descriptors per image from 24×24 patches on a regular grid every

7. Available at https://www.cs.toronto.edu/ kriz/cifar.html

TABLE 7
Classification Rates (%) on the CIFAR-10 dataset.

Method AP Score (%)

EPCC-L1 75.79

EPCC-L2 75.22

PCC-L1 75.62

PCC-L2 72.28

SVM 71.71

KSVM 76.45
Additive Kernels 75.47

1S-BFHC 71.30

GEPSVM 18.23

Deep EPCC 96.68
Deep CNN (softmax) 95.00

four pixels at 5 scales. The dimensionality of the tested descriptors
is reduced to 80 by using Principal Component Analysis (PCA).
We used 6 × 106 descriptors to learn PCA projections and 256-
component Gaussian mixture model (GMM) components. The
final dimension of the image FVs is around 164K. For CIFAR-
100 dataset, we used 4096-dimensional fine-tuned Convolutional
Neural Net (CNN) features. Training data has 50K samples while
test data has 10K samples.

The results are summarized in Table 8, in terms of simple
classification accuracies. The Additive Kernels gave the best
accuracy on Caltech-256. However, the proposed EPCC classifiers
and KSVM using 2nd order polynomial kernel function achieved
the best accuracies for CIFAR-100 dataset. However, note that
Additive Kernels used significantly longer feature vectors than
EPCC: 3 times the original input space dimension for Caltech-
256, and 5 times for CIFAR-100 dataset. In a similar manner
the dimensionality of the new sample space is

(d+2−1
2

)
when a

2nd order polynomial kernel function is used. CPM achieves the
second best accuracy for Caltech-256. Although proposed meth-
ods were beaten by Additive Kernels and CPM on Caltech-256
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TABLE 8
Classification rates (%) for the multi-class visual object classification

experiments.

Methods Caltech-256 CIFAR-100

EPCC-L1 40.1 ±0.6 86.4
EPCC-L2 40.0 ±0.7 86.4
PCC-L1 40.4 ±0.7 86.2

PCC-L2 38.4 ±0.4 85.4

SVM 37.6 ±0.7 85.8

KSVM 38.8 ±0.7 86.4
GEPSVM 13.3±0.6 74.5

1S-BFHC 38.3 ±1.0 85.6

SVDD 9.9 ±0.2 48.8

Additive Kernels 42.6 ±0.7 73.3

CPM [25] 41.7 ±3.7 65.9

dataset, they did significantly outperform the remaining (quasi-)
linear classifiers that were tested. Note that for Caltech-256, PCC-
L1 significantly outperforms SVM even though it has just one
additional feature (of 164k). This shows that it is the positive-
class-bounding polyhedral cone geometry that is providing the
improvement here, not the features used, and also that our training
methods can gracefully handle very large feature vectors.

TABLE 9
Accuracies on the MS-COCO dataset on 80 classes for top-3 highest

ranked labels.

Method P-C R-C F1-C
Deep EPCC 60.6 60.2 59.0
WARP [56] 59.3 52.5 55.7
CNN+RNN [57] 66.0 55.6 60.4

3.4.4 Experiments on Multi-Label Classification
We have used MS-COCO dataset for multi-label classification.
Images in this dataset may have more than one category label, and
there are approximately 2.95 object labels per image. To assess
the performance, we used the most common precision, recall and
F1 measures computed based on the top-3 highest ranked labels as
in [56]. Here we only tested the proposed multi-label deep neural
network classifier and compared it to the best published results on
MS-COCO. The results are given in Table 9. As can be seen in
the table, the proposed Deep EPCC method achieves comparable
results compared to the most complex methods even though it uses
a simple loss function given in (8). For example WARP [56] learns
a weight function for each example and CNN+RNN [57] uses
two different deep neural network architectures for multi-label
classification. Yet, the proposed method significantly outperforms
WARP and it is slightly behind CNN+RNN in terms of F1-C
scores.

3.5 Experiments on UCI Repository Datasets
We tested the proposed methods on 7 binary and multi-class
datasets chosen from UCI repository: Ionosphere, Iris, Letter
Recognition (LR), Multiple Features (MF) - pixel averages, Pima
Indian Diabetes (PID), Wine, and Wisconsin Diagnostic Breast
Cancer (WDBC) datasets. The sizes of the UCI problems are

TABLE 10
Datasets from the UCI Repository

Dataset # Classes # Examples Dimension

Ionosphere 2 351 34

Iris 3 150 4

LR 26 20000 16

MF 10 2000 240

PID 2 768 8

Wine 3 178 13

WDBC 2 569 30

summarized in Table 10. We used 10-fold cross-validation to eval-
uate the performance. The accuracies are given in Table 11. Since
the software of SPLA1 [23], SPLA2 [23], and Polyceptron [24]
methods are not available, we report only the published accuracies
on some of the datasets tested in those studies. EPCC, PCC and
KSVM methods beat other methods by winning 3 out of 7 datasets.
The proposed methods typically achieve the best or the second best
results for all tested datasets. The proposed classifiers significantly
outperform linear SVM especially on Ionosphere and LR datasets
(e.g., for LR dataset, the accuracy of EPCC-L1 is approximately
20% better than the accuracy of SVM which achieves the best
performance among other linear rival classifiers). The Polyceptron
method of [24] wins for WDBC, while GEPSVM and SVDD
methods usually give the worst classification accuracies.

3.6 Experiments on Open Set Recognition
3.6.1 Open Set CIFAR-10 Dataset Recognition
Here, we used CIFAR-10 dataset to create open set recognition
setup. For this setup, we randomly select 3 classes from training
data and train the classifiers on the training samples from these
classes alone. In contrast, testing uses samples from all 10 classes.
We compute AP scores from the Precision-Recall curves for the
3 classes, take the average of these, repeat the whole procedure
over 10 trials, and report the final averaged average AP score.
The results for CIFAR-10 are summarized in Table 12. As seen
from the results, the proposed PCC-L1 achieves the best accu-
racy. All PCC/EPCC classifiers significantly outperform all other
tested classifiers including KSVM and Additive Kernels. 1-vs-Set
Machine method slightly beats linear SVM. GEPSVM and SVDD
are the worst performing methods.

3.6.2 Open Set USPS Digit Recognition
Next we made experiments on open set recognition environment
based on the USPS Digits dataset that contains 9298 16×16
gray-scale images of hand-written digits, with 7291 for training
and validation and the remaining 2007 for testing. To make
the problem harder we use the raw gray-scale pixel values as
features without any pre-processing or feature extraction. As in the
previous experiment, for open set recognition we randomly choose
three classes and train the methods on the training samples from
these classes alone. We use samples from all 10 classes during
testing. We compute AP scores as in the previous experiment.
We also compared test times of the methods for this dataset. The
results are presented in Table 13. The OC-EPCC classifier achieves
the best accuracies, followed by PCC-L2, EPCC-L1/L2, PCC-L1

and KSVM. All of the proposed methods significantly outperform
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TABLE 11
Classification rates (%) for the UCI repository datasets.

Methods Ionosphere Iris WDBC PIMA Wine MF LR

EPCC-L1 92.0 ±5.5 98.0 ±3.2 98.0 ±1.6 76.5 ±3.2 97.5 ±3.2 97.2 ±1.3 79.6 ±1.4
EPCC-L2 92.0 ±5.5 98.0 ±3.2 97.9 ±1.6 76.9 ±4.2 97.5 ±3.2 97.2 ±1.3 79.3 ±1.4
PCC-L1 92.3 ±4.4 96.7 ±4.7 97.4 ±2.1 77.3 ±2.5 98.1 ±3.0 96.8 ±1.3 68.6 ±0.8
PCC-L2 89.9 ±6.9 96.7 ±4.7 97.2 ±1.9 70.1 ±4.9 95.0 ±5.8 95.2 ±1.4 63.6 ±1.3
SVM 87.3 ±7.0 94.7 ±4.9 97.7 ±2.0 76.8 ±3.1 96.9 ±4.4 93.9 ±1.1 59.8 ±1.7
KSVM 91.7 ±5.8 98.0 ±4.5 95.1 ±2.0 72.5 ±5.0 96.3 ±5.3 98.2 ±0.7 95.3 ±0.7
GEPSVM 74.8 ±5.8 97.3 ±4.7 89.1 ±5.5 74.7 ±4.4 80.7 ±13.7 53.8 ±4.0 30.5 ±1.1
1S-BFHC 86.8 ±7.2 94.0 ±6.6 97.4 ±2.1 76.0 ±5.0 98.8 ±2.6 93.8 ±1.5 25.3 ±0.8
SVDD 79.4 ±10.5 91.3 ±7.0 89.8 ±4.8 59.0 ±8.4 90.0 ±8.9 80.1 ±3.5 37.5 ±1.6
Additive Kernels 86.8 ±7.3 96.0 ±4.7 96.3 ±2.3 77.1 ±3.3 96.3 ±4.4 95.1 ±1.0 78.3 ±1.2
CPM [25] 85.2 ±4.9 83.3 ±12.7 91.86 ±2.5 60.7 ±11.3 96.9 ±4.4 96.1 ±1.3 52.9 ±6.0
SPLA11 [23] 88.0 ±6.0 - 93.8 ±2.9 76.9 ±0.7 - - -

SPLA21 [23] 90.6 ±1.2 - 95.8 ±0.4 76.8 ±0.6 - - -

Batch Polyceptron1 [24] 89.7 ±1.3 - 98.5 ±0.1 - - - -

1 The results are taken from corresponding article due to lack of software.

TABLE 12
AP scores (%) for the open set CIFAR-10 dataset experiment.

Methods AP Score (%)

EPCC-L1 88.85

EPCC-L2 88.85

PCC-L1 90.63

PCC-L2 87.90

OC-EPCC L1 88.64

OC-EPCC L2 88.64

SVM 79.07

KSVM 84.27

Additive Kernels 84.02

CPM [25] 81.05

1-vs-Set Machine 79.11

GEPSVM 36.24

SVDD 35.66

linear SVM. In terms of testing speed, GEPSVM, SVDD, linear
SVM and 1S-BFHC classifiers are the best ones followed by the
proposed classifiers. The testing times of the proposed classifiers
are comparable to the testing time of linear SVM. More precisely,
linear SVM is only 1.4 times faster than PCC classifiers whereas
it is approximately 2.5 times faster than EPCC classifiers. KSVM,
CPM, and Additive Kernels are the worst performing methods in
terms of speed.

3.7 Vertex Point Estimation Experiments

Here we conduct tests on estimating the best cone vertex points by
solving the optimization problem (7). To this end, we first test the
proposed method on synthetic data to visualize the convergence
of the algorithm, and then we perform tests on 7 real binary
and multi-class datasets chosen from UCI repository: Iris, Letter
Recognition (LR), Multiple Features (MF) - pixel averages, Wine,
Glass Identification, Pima Indian Diabetes (PID), and Wisconsin
Daignostic Breast Cancer (WDBC) datasets.

TABLE 13
AP Scores (%) for the open set USPS experiment.

Methods AP Score (%) Test Time (s)
OC-EPCC-L1 81.98± 13.74 0.44

OC-EPCC-L2 81.97± 13.70 0.41

EPCC-L1 79.63± 13.76 0.45

EPCC-L2 79.63± 13.76 0.48

PCC-L1 78.26± 13.56 0.23

PCC-L2 80.21± 11.34 0.24

SVM 69.7± 24.24 0.13

KSVM 76.39± 21.47 6.61

Additive Kernels 72.08± 22.45 1.78

CPM [25] 69.25± 14.24 48.10

1S-BFHC 68.12± 23.15 0.18

1-vs-Set Machine 64.28± 24.09 0.42

GEPSVM 45.51± 25.93 0.01

SVDD 12.54± 8.30 0.01

For 2D synthetic data, we sampled 250 points uniformly
distributed between (2,3) in both directions as positive data. Thus,
the positive class region is a square region where the mean
point is µ = (2.5, 2.5). Then we sampled 750 negative samples
surrounding the positive class samples as seen in Fig. 5. We
initialized the vertex point with (0, 0), and the proposed method
successfully converged to the optimal vertex point, (2.44, 2.46) in
6 iterations as seen in Fig. 5.

The results for real data sets using 5-fold cross-validation are
summarized in Table 14. Here we compare the EPCC methods
using the positive class mean and the optimally estimated vertex
point (it is denoted as EPCC-V). For all tests, we initialized the
vertex point with positive class mean. As can be seen in the table,
the EPCC-V classifier using the optimally estimated vertex points
achieves better results than the one using positive class means for
some datasets, but the difference is not very significant. Consid-
ering the time-consuming optimization of EPCC-V classifier, it is
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Fig. 5. Visualization of the convergence of the cone vertex point estima-
tion algorithm: Starting from (0, 0), the method converges to the optimal
point in 6 iterations.

TABLE 14
Classification Rates (%) on the UCI Datasets.

Method Iris Letter MF Wine Glass WDBC PIMA

EPCC-L1-V 96.67 79.60 95.30 96.25 97.62 97.91 76.41

EPPC-L2-V 96.00 79.69 95.60 95.63 94.36 97.73 77.30
EPCC-L1 95.99 75.41 95.40 95.63 97.62 97.86 76.53

EPCC-L2 95.99 79.34 95.60 96.25 96.19 97.73 76.89

much preferable to set the cone vertex to the mean of all positive
training data.

4 SUMMARY AND CONCLUSIONS

This study argues that in open set object recognition, face veri-
fication and sliding window object detection problems, it is ad-
vantageous to use asymmetric classifiers that focus on producing
compact, well-constrained decision regions for the positive (target
object) class. To this end we introduced PCC, EPCC and OC-
EPCC, a family of robust scalable maximum margin learning
methods whose positive acceptance regions are planar sections
through L1 or L2 cones. Then, we integrated the polyhedral conic
classification loss into the deep neural network classifiers. We
also studied finding an optimum cone vertex point and proposed
a novel methodology that simultaneously finds the best cone
vertex point and classifier parameters. For appropriate parameter
settings, the proposed methods give compact, convex acceptance
regions that tightly constrain the extent of the positive class.
A feature vector augmentation allows PCC and EPCC to be
trained using standard linear SVM software, while OC-EPCC is
currently trained using an analogous stochastic gradient descent
method. We obtained good results on a range of object detec-
tion, face verification, open set recognition and classical closed-
set discrimination tasks with these methods. The detection and
open set recognition results were particularly promising, giving
significant improvements across the board against comparable
(quasi-)linear classifiers including SVMs and several one-class
approaches. Using L1 norm yielded better results compared to
L2 norm especially for the datasets where the dimensionality is
high and the number of samples per class is low compared to the
feature size. Overall, we believe that our methods will prove to

be useful drop-in replacements for linear discriminants such as
SVMs in many current visual object detection and classification
tasks. Moreover, the proposed deep neural network classifier using
the EPCC loss outperformed the network using softmax loss in all
tests. These results comply with the recent studies [27], [28], [29],
[30] showing the need for compact class decision boundaries in
deep neural network classifiers.
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