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In this paper we propose a novel clustering algorithm that uses local affine/convex hulls for high- 

dimensional data clustering. In high-dimensional spaces, the sparse and irregular distributions make the 

nearest-neighbor distances unreliable (hole artifact), and this deteriorates the clustering performance. 

Therefore, there is a need to fill in these gaps between the nearest samples. To this end, we use local 

affine/convex hulls of the nearest neighbors of a given sample to fill in the holes, and this greatly im- 

proves the Euclidean distance metric and the clustering accuracy. The proposed method can also be seen 

as the local extension of the well-known iterative subspace clustering algorithms in which the entire 

cluster is approximated with a single linear/affine subspace. Experimental results show that the proposed 

method is efficient and it outperforms other subspace clustering algorithms on a wide range of datasets. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Data clustering can be defined as splitting data into clusters

ased on their similarities. Therefore, this task requires discovering

he unknown hidden groups of data samples. Clustering has found

ide application areas including machine learning, pattern recog-

ition, computer sciences, medical sciences and economics. How-

ver, clustering is a difficult task since it is both data dependent

nd ill-posed problem. For instance, optimizing clustering criteria

ike the minimum squared error that is used by many clustering

lgorithms is theoretically NP-hard. Since it is also data dependent,

here is not a single clustering algorithm that can work well for all

roblems. As a consequence, many clustering algorithms have been

roposed and there is a vast number of surveys for analyzing and

ategorization of clustering algorithms [1,2] . 

Clustering is initially originated as an unsupervised method

hich only uses unlabeled data, thus many clustering algorithms

ave been proposed for this setting [1–4] . However, recently

here is a growing interest in application of clustering algorithms

or both semi-supervised and supervised applications. In semi-

upervised applications, in addition to the unlabeled data, there

s also a limited amount of labeled data or some side-information

iven in terms of similarity/dissimilarity constraints [5,6] . Super-

ised clustering methods on the other hand use completely labeled

ata to arrange data for further process such as classification [7,8] .
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In this paper we focus on unsupervised clustering of high-

imensional data. Clustering of high-dimensional data is more

roblematic compared to the clustering of low-dimensional data

amples. Because, majority of the clustering algorithms rely on

air-wise Euclidean distances between the data samples, and the

uclidean distances become unreliable in high-dimensional spaces

ecause of sparse and irregular distributions of data samples [9–

2] . In particular, the authors [10] theoretically show that the dis-

ance to the nearest data point approaches to the distance to the

arthest data point as the dimensionality increased so that Eu-

lidean distance between pairs of samples becomes meaningless

or high-dimensional spaces. This effect makes high-dimensional

earest neighbor based clustering methods erratic, which degrades

he performance of clustering methods. In supervised case, this

roblem is circumvented by approximating each class set with a

oints set that fills in the sparse regions between examples of the

ame class. Any convex set containing samples of a class has this

roperty. Both global and local convex sets such as affine/convex

ulls [13] , bounding hyper-spheres [14] , and bounding hyper-disks

12] have been used for this purpose, and these studies report sig-

ificant improvements over the Euclidean distance. In this study

e also use local affine/convex hulls to fill in the sparse regions,

ut we focus on a more complicated scenario where we do not

ave any class labels. To this end, we propose an iterative algo-

ithm where we utilize an initial guess of cluster memberships and

ry to improve the cluster assignments in each iteration. 

Related Work: As stated above, the feature space is very sparse

n high-dimensional spaces and it is hard to distinguish high

ensity regions from low-density regions which complicates the

ata clustering problem. Subspace clustering is the most common

https://doi.org/10.1016/j.patrec.2019.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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technique to overcome this limitation. Subspace clustering splits

the data samples into groups such that each group contains only

data samples lying in the same low-dimensional subspace of the

given high-dimensional feature space. This problem has recently

received great attention especially in computer vision since many

common datasets used for motion segmentation, hand-written

recognition and face clustering in different illumination conditions

can be modeled by mixture of linear/affine subspaces. As a result,

many subspace clustering methods have been proposed. Among

these, iterative approaches such as k -subspaces [15] , k -means Pro-

jective Clustering [16] , Median k -Flats [17] alternate between as-

signing points to linear/affine subspaces and updating subspace pa-

rameters based on the newly assigned data points to each sub-

space. 

Statistical approaches such as Mixtures of Probabilistic Princi-

pal Component Analysis (MPPCA) [18] and Multi-Stage Learning

(MSL) [19] approximate each subspace with a Gaussian distribution

and update cluster memberships and Gaussian distribution param-

eters by using Expectation Maximization (EM) algorithm. There are

also algebraic methods such as Generalized PCA [20] and its robust

variant [21] which formulate the subspace clustering problem as

a high-order polynomial fitting problem. Majority of the subspace

methods [22–25] use spectral clustering and these methods differ

in the way that how they create the affinity matrix. For example,

[22,25] use sparse combination coefficients to create affinity ma-

trix, [24] creates an affinity matrix using similarities between local

linear subspaces, and [23] uses low-rank representation for con-

structing affinity matrix [26] creates many local best-fit affine sub-

spaces and apply a greedy selection algorithm to select the ones

that best fit to the given data. Interested reader is referred to sur-

vey [3] for more information on subspace clustering. 

Our proposed method can be seen as similar to [22,24–26] in

the sense that we compute the distances based on the nearest

affine/convex reconstruction weights rather than Euclidean dis-

tances. However, our method differs from these methods in a way

that we use different local models (as opposed to the linear sub-

spaces or sparse representation) and we iteratively update each

cluster, thus the similarities/distances may change in each itera-

tions (however all other methods compute the similarities only

once at the beginning and use it in spectral clustering). Therefore,

our method can be seen as a variant of k -means clustering algo-

rithm where the nearest mean distance is interchanged with the

nearest local affine/convex hull distances. 

In addition, motivated by the great success of deep neural net-

works in supervised classification, there are many attempts to

adopt deep learning for unsupervised clustering [27–29] . For exam-

ple, [28] proposes Deep Embedded clustering method that simulta-

neously learns feature representation and cluster assignments us-

ing deep neural networks. To this end, the authors integrate KL di-

vergence loss into a deep autoencoder network. In [29] , the same

network is used together with additional reconstruction loss to im-

prove the clustering accuracy. Caron et al. [27] introduces a very

simple iterative network where a convolutional neural network

(CNN) is used to extract features and k -means clustering algorithm

is used to assign pseudo labels to the samples. Then, the network

is re-trained by using the pseudo labels returned by the k -means

clustering algorithm and this procedure is repeated until conver-

gence. More information on clustering methods using deep neural

networks can be found in the survey paper of [30] . 

2. Method 

Similar to local best-fit flats clustering [26] , k -means Projec-

tive Clustering and k -subspaces clustering algorithms, we also need

pre-defined clusters before running the proposed algorithm. To ini-

tialize the algorithm, we can use any clustering method such as
 -means clustering or k -means Projective Clustering. In our exper-

ments, we always initialized our algorithm with k -means Projec-

ive Clustering, and k -means Projective Clustering method is ini-

ialized with k -means clustering method. For each data point in

he dataset, we compute the nearest m neighbors from each clus-

er and compute the distances from that point to the affine/convex

ulls of those neighbors. Then, the data point is assigned to the

luster yielding the minimum affine/convex hull distance. This pro-

edure is repeated until the convergence. The algorithm of the pro-

osed clustering method is summarized in Algorithm 1 . Using lo-

al affine/convex hulls for distance computation rather than using

lassical Euclidean distances greatly improves the results. Fig. 1

llustrates the visual comparison of Euclidean distance to the lo-

al affine/convex hull based distances. We define how to compute

ffine and convex hull distances below. 

lgorithm 1 Local Affine/Convex Hull Clustering Algorithm. 

nitialize 

nitial Clusters S c = { X c } K c=1 , D the distance matrix including pair-

ise distances, n is the number of all data samples, m is the num-

er of the nearest samples, T is the maximum iteration number 

escription: 

for t ∈ 1 , . . . , T do 

for i ∈ randperm (n ) do 

– x i = X (: , i ) ; 

for c ∈ 1 , . . . , K do 

– Determine the m -nearest samples of x i from cluster c

by using distance matrix D ; 

– Find the affine/convex hull distances using equations

(4)/(6); 

end for 

– Assign x i to the cluster yielding the smallest distance; 

end for 

if the assignments do not change, break ; 

end for 

.1. Computing the affine/convex hull distances 

Affine hull (affine subspace) of m -nearest point set

 

x c1 , . . . , x cm 

} of a data point x belonging to cluster c is de-

ned as, 

 

a f f ine 
c (x ) = 

{ 

p | p = 

m ∑ 

i =1 

αci x ci , 

m ∑ 

i =1 

αci = 1 , αci ∈ IR 

} 

. (1)

y choosing a reference point μc (such as mean, μc =
(1 /m ) 

∑ m 

i =1 x ci ) from the point set, the local affine hull of the near-

st neighbors can also be written as 

 

a f f ine 
c (x ) = 

{
p | p = μc + U c v c , v c ∈ IR 

l 
}
. (2)

ere, U c is a local orthonormal basis for the directions spanned

y affine subspace and v c is a vector of free parameters that de-

ermines the coordinates for the points within the subspace, ex-

ressed with respect to the basis U c . Numerically U c is obtained

y applying the Singular Value Decomposition (SVD) to [ x c1 −
c . . . , x cm 

− μc ] and l is the dimension of the basis. In order to

ssign a data point x to a cluster, we need to find the minimum

istances between data point and local linear affine hulls of each

luster. Then, the data point will assigned to the cluster whose lo-

al affine hull is closest to x . The minimum distance between x

nd a local linear affine hull is computed as 

(x , H 

a f f ine 
c (x )) = arg min 

p ∈ H a f f ine 
c (x ) 

‖ 

x − p ‖ 

= arg min 

v c 

‖ 

x − μc − U c v c ‖ 

, 

c = 1 , . . . , K. (3)
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Fig. 1. Visual comparison of distances: Nearest distances based on (a) Euclidean distance, (b) convex hull distance, (c) affine hull distance. The closest distance from any 

sample to an affine/convex hull is the norm of displacement from that sample to the closest point on the hull. Observe how the distances change by each selected method. 
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he minimization of above optimization problem leads to v c =
 c (x − μc ) . It should be noted that P c = U c U 

� 
c defines orthogonal

rojection operator onto the difference subspace of local neighbors.

herefore, the final distance becomes 

(x , H 

a f f ine 
c (x )) = ‖ 

(I − P )(x − μc ) ‖ 

, (4)

here I is the identity matrix. See [13] for more details. 

For convex hulls, the convex hull of a point set is the convex

pan of the samples in that point set and it can be obtained by

dding an additional nonnegativity constraint to (1) as, 

 

con v ex 
c (x ) = 

{ 

p | p = 

m ∑ 

i =1 

αci x ci , 

m ∑ 

i =1 

αci = 1 , αci ≥ 0 

} 

. (5)

inding the distance from a point to the convex hull of a point

et requires the solution of the following quadratic programming

roblem 

rg min 

αc 

1 

2 

‖ 

x − X c αc ‖ 

2 

s.t. 

m ∑ 

i =1 

αci = 1 , αci ≥ 0 , (6) 

here X c is the matrix whose columns are the nearest neighbors

f point x coming from the cluster c . Once the optimal coefficient

ector α∗
c is found, ‖ x − X c α∗

c ‖ determines the minimum distance

rom point x to the local convex hull of the cluster c . 

.2. Algorithm complexity 

The proposed method requires finding the nearest neighbors

rom all clusters for each sample in the data set. Computation

f the nearest neighbors in each iteration is computationally ex-

ensive, thus we compute all pair-wise distances at the beginning

f the algorithm and save them in a distance matrix, D . During

nding the nearest neighbors, we sort the pre-computed distances

nd determine the nearest neighbors efficiently. Computational

omplexity of finding distances from each sample to the local

ffine/convex hulls is related to O ( m 

2 ), where m is the number of

he nearest neighbors and it must be set by the user. For small val-

es of m , the training complexity will be very low, but for higher
alues the complexity can be high. In our experiments, to deter-

ine the value of m , we tried m = 5 , 10 , 15 , 20 values on a valida-

ion set and fixed m to the value yielding the highest accuracy. 

. Experiments 

We tested the proposed clustering algorithm, Local Subspace

lustering (LSC) using local affine and convex hulls, on four differ-

nt datasets: Hopkins 155, Cifar10, ESOGU Videos, and MNIST. We

ompared the proposed method to k -means clustering and other

tate-of-the-art subspace clustering algorithms including k -means

rojective Clustering (PC) [16] , Sparse Subspace Clustering (SSC)

22] , Sparse Manifold Clustering (SMC) [25] , Robust Subspace Clus-

ering by Low-Rank Representation (LRR) [23] , Ordered Subspace

lustering (OSC) [31] . We use k -means clustering algorithm to

nitialize PC, and the result of PC is used to initialize the other

ubspace clustering algorithms including the proposed one that

eeds initialization. To measure the clustering accuracy, we used

he classification accuracy which is adopted by other subspace

lustering papers. In addition, we also use the most common

etric F-measure, which is widely used to evaluate clustering

esults. F-measure is the harmonic mean of the pair-wise precision

nd recall measures. We compute precision and recall over pair of

amples and consider for the samples whether they are assigned

o the same cluster and whether they contain the same class

embership based on the ground-truth data labels. Let A denote

he set of images assigned to the same cluster and let B denote

he set of images that contain the same class category. With | A |

enoting the cardinality of A , the measures are defined as: 

recision = 

| A ∩ B | 
| A | , Recall = 

| A ∩ B | 
| B | , 

-score = 

2 × Precision × Recall 

Precision + Recall 
. 

.1. Experiments on MNIST digit database 

The MNIST digit dataset consists of 70 K handwritten digit sam-

les, each of size 28 × 28 pixels. For this dataset, 60 K samples are

llocated for training and the remaining 10 K samples are reserved

or test. We applied clustering algorithms to the training and test
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Table 1 

Classification rates (CR) (%) and F-scores on MNIST digit database. 

Methods Training data Test data 

CR F-score CR F-score 

LSC-aff. hull 89.9 83.8 95.7 91.7 

LSC-conv. hull 89.7 83.5 95.5 91.3 

k -means 62.2 49.2 60.7 47.4 

PC 87.5 79.7 94.8 90.0 

SSC OOM OOM - - 

SMC - - 61.4 58.6 

LRR - - 11.4 18.2 

OSC OOM OOM 11.2 21.6 

DEC ( [28] ) 86.6 - 82.4 - 

DCEC ( [29] ) 89.0 - 85.3 - 

Table 2 

Classification rates (CR) (%) and F-scores on the Hopkins 

155 database. 

Methods CR F-score 

LSC-affine hull 91.92 89.26 

LSC-convex hull 91.26 88.56 

k -means 79.68 76.11 

PC 91.13 88.33 

SSC 96.78 96.08 

SMC 82.03 78.43 

LRR 94.73 92.86 

OSC 80.79 76.70 
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sets separately since some clustering methods had memory prob-

lems for 60K training data. 

The accuracies are given in Table 1 . In addition to the subspace

methods, we also give accuracies of the clustering methods us-

ing deep neural networks at the bottom of the table. Majority of

the tested subspace clustering algorithms either fail to converge or

have memory problems on 60K training data. The proposed clus-

tering method using local affine hulls achieves the best accuracy

in all cases. All other state-of-the-art subspace clustering meth-

ods SMC, LRR and OSC return very poor results compared to our

proposed method, which clearly demonstrates the superiority of

the proposed clustering algorithm. The proposed methods also out-

perform recent state-of-the-art deep clustering methods on both

training and test data. Especially, the performance difference is

very significant on the test data. 

3.2. Experiments on the Hopkins 155 database 

The Hopkins 155 dataset includes 156 sequences of two or three

motions where each motion corresponds to a subspace. Each se-

quence is a sole clustering task, therefore there are 156 clustering

tasks in total for this dataset. The data are slightly corrupted by

noise, but do not have any missing entries or outliers. The clas-

sification accuracies and F scores for all 156 sequences are given

in Table 2 . SSC method achieves the highest accuracy followed by
Table 3 

Classification rates (CR) (%) and F-scores on Cifar10 database. 

Methods Batch 1 Batch 2 Ba

CR F-score CR F-score CR

LSC-aff. hull 86.0 72.8 86.5 73.8 85

LSC-conv. hull 85.1 71.5 85.3 71.3 85

k -means 86.1 73.5 86.7 74.4 86

PC 84.5 70.6 85.1 71.8 84

SSC - - - - - 

SMC 85.8 73.4 86.6 74.6 86

LRR 75.2 60.1 76.4 61.1 70

OSC OOM OOM OOM OOM OO
RR and the proposed clustering methods. k -means clustering is

he worst performing method. 

.3. Experiments on the Cifar10 database 

Cifar10 dataset includes 60K 32 × 32 small images of 10 ob-

ects: airplane, automobile, bird, cat, deer, dog, frog, horse, ship

nd truck. 50K samples are used as training and they are split into

 batches whereas the remaining 10K samples are used for testing.

e used 4096 dimensional CNN features. To extract CNN features,

ll images are first resized to 256 × 256 and then we used Caffe

32] implementation of the CNN described by Krizhevsky et al.

33] by using the identical setting used for ILSVRC 2012 classifi-

ation with the exception that the base learning rate was set to

.001. 

In our experiments we combined all samples in each batch with

he test samples (20K samples in total) and conducted cluster-

ng for each batch separately. The results are given in Table 3 are

uite mixed. The SSC method that performed best on the Hopkins

ataset did not return a solution in 4 weeks, which clearly demon-

trates that this method does not scale well with the data set size.

imilarly, OSC method produced “out of memory” (OOM) problem

lthough we use a very powerful workstation with 256 GB RAM

or conducting experiments. The best accuracies are achieved by

 -means, SMC and the proposed clustering method using convex

ulls. LRR method is the worst performing method. 

.4. Experiments on ESOGU face videos 

ESOGU Face Videos [34] includes videos of 285 people cap-

ured in two sessions separated by at least three weeks. Four short

ideos were captured under four different scenarios in each ses-

ion. We used the videos recorded with free head movements un-

er normal illumination conditions as shown in Fig. 2 . Face images

re manually cropped from videos and they are resized to 120 × 90

ixels. There are many proposed descriptors for extracting features

rom face images [35–38] . In our experiments, in addition to the

lassical LBP (local binary patterns) features [38] , we also used re-

ently proposed context-aware local binary features [35] for ex-

racting features from face images. 

For clustering, we use face images of randomly chosen 5 peo-

le. This is repeated 5 times and the resulting accuracies for LBP

nd context-aware local binary features are given in Table 4 . As in

he previous case, SSC failed to converge. For LBP features, SMC,

C, and the proposed clustering methods achieve the best accura-

ies whereas SMC, OSC and the proposed methods yield the best

ccuracies for context-aware local binary features. For LBP features,

MC significantly outperforms all other clustering methods for tri-

ls 1 and 2, but perform badly on trials 3 and 4. PC and the pro-

osed methods yield similar accuracies. LRR and OSC methods re-

urn very poor accuracies on LBP features. For context-aware local

inary features, k -means clustering returns very poor results since
tch 3 Batch 4 Batch 5 

 F-score CR F-score CR F-score 

.7 72.4 85.8 72.7 85.1 71.6 

.5 72.4 85.6 72.5 85.5 72.4 

.0 73.4 86.2 73.8 85.3 72.3 

.8 71.4 84.7 71.2 83.9 69.9 

- - - - - 

.0 73.7 86.0 73.7 85.1 72.3 

.5 60.5 75.6 60.1 74.4 58.6 

M OOM OOM OOM OOM OOM 
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Table 4 

Classification rates (CR) (%) and F-scores on ESOGU face videos database. 

Methods 

LBP Features 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

CR F-score CR F-score CR F-score CR F-score CR F-score 

LSC-aff. hull 83.4 72.7 83.3 77.5 83.3 73.1 89.2 79.7 90.1 83.6 

LSC-conv. hull 83.3 72.7 83.4 77.6 83.2 73.1 89.2 79.7 90.1 83.6 

k -means 83.1 70.1 66.3 59.7 63.7 66.3 57.8 49.6 70.2 76.1 

PC 83.4 72.7 83.5 77.6 83.3 73.1 89.3 79.9 89.9 83.3 

SSC - - - - - - - - - - 

SMC 97.2 94.8 96.1 94.6 72.4 59.0 69.5 74.6 84.9 83.3 

LRR 43.0 37.4 52.9 53.1 42.7 44.0 46.4 46.3 49.4 54.3 

OSC 54.0 43.2 73.0 76.3 58.3 58.2 55.1 44.0 64.0 58.5 

Context aware local binary features 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

CR F-score CR F-score CR F-score CR F-score CR F-score 

LSC-aff. hull 92.4 91.5 87.7 87.4 85.2 84.6 100 100 86.5 85.5 

LSC-conv. hull 92.4 91.5 87.5 87.2 85.7 84.8 100 100 86.4 85.2 

k -means 72.4 65.5 83.8 82.1 83.0 82.3 71.9 67.9 76.9 69.7 

PC 83.0 81.7 83.8 82.6 89.8 83.7 95.2 94.5 80.0 74.3 

SSC - - - - - - - - - - 

SMC 99.4 99.2 99.0 98.2 99.8 99.0 83.4 78.6 85.0 84.7 

LRR 98.0 97.2 68.4 65.0 79.9 73.5 92.1 91.4 85.0 84.7 

OSC 99.4 99.2 99.0 98.2 99.9 99.0 100 100 92.4 92.3 

Fig. 2. Some image frames extracted from videos. 
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Table 5 

Test times of the clustering methods. 

Methods Time (s) 

LSC-affine hull 5.6 

LSC-convex hull 37.2 

k -means 0.3 
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he dimension of the feature space is very high (i.e., the dimen-

ionality is 32 K). However, these features are more discriminative

ompared to LBPs, and the most tested subspace methods as well

s the proposed methods achieve better accuracies compared to

he ones obtained for LBP features. Especially, poorly performing

RR and OSC methods on LBP features, return very high accuracies

n context-aware features. 

.5. Comparison of the speed of the algorithms 

We also conducted experiments to compare the speed of the

roposed algorithms with the k -means clustering algorithm. To

his end, we created 5 classes including 200 examples per class in

00-dimensional space. All classes have the same covariance struc-

ure but their centers are shifted for separation (each class is re-

pectively shifted as −5, −2.5, 0, 2.5 and 5). As stated earlier, com-

utational complexity of the proposed methods largely depends on

he number of the nearest neighbors, m . In all experiments, we

et it to a moderate value of 15. For a fair comparison with the
 -nearest mean clustering, we started our algorithms completely

rom random initializations (It should be noted that this is gener-

lly not a good idea since the proposed methods are very sensitive

o the initialization. This is done only for fair comparison in these

ests). 

We repeated the experiments 10 times and the final test times

re the averages over these 10 trials. The test times are given

n Table 5 . Since the proposed algorithms are started from ran-

om initializations, they are slow compared to k -means clustering.

he proposed affine hull based clustering is approximately 7 times

aster than the proposed convex hull based clustering. This is ex-

ected since computing distances from samples to the affine hulls

equires simple multiplications whereas small size quadratic pro-

ramming problems must be solved for computing distances to the

onvex hulls. 

. Conclusion 

In this paper, we introduced a novel method for high-

imensional data clustering. The proposed method uses local

ffine/convex hulls constructed from the nearest neighbors of sam-

les, and cluster assignment of each sample is made based on

he shortest distances to these local hulls. This greatly improves

he clustering accuracy of the methods using pair-wise Euclidean

istances. Experimental results demonstrate several facts: First of

ll, there is not a single clustering algorithm that works well for

ll problems, and the results are mostly data dependent. We ob-

erved that the best performing methods change for even dif-

erent partitions of the same type of data. Yet, the proposed

lustering methods perform well on most of the tested datasets

nd achieve the best accuracies or comparable results to the

est performing method. We also realized that majority of the
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state-of-the-art subspace clustering methods do not scale well

with data set size and fail to converge for even moderate sized

datasets. Furthermore, some methods had insufficient memory is-

sues for most of the datasets. In contrast, the proposed method did

not have any of these problems. 
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