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a b s t r a c t 

This paper introduces a robust method for semi-supervised training of deep neural networks for multi- 

label image classification. To this end, a ramp loss is utilized since it is more robust against noisy and 

incomplete image labels compared to the classic hinge loss. The proposed method allows for learning 

from both labeled and unlabeled data in a semi-supervised setting. This is achieved by propagating la- 

bels from the labeled images to their unlabeled neighbors in the feature space. Using a robust loss func- 

tion becomes crucial here, as the initial label propagations may include many errors, which degrades 

the performance of non-robust loss functions. In contrast, the proposed robust ramp loss restricts ex- 

treme penalties from the samples with incorrect labels, and the label assignment improves in each it- 

eration and contributes to the learning process. The proposed method achieves state-of-the-art results 

in semi-supervised learning experiments on the CIFAR-10 and STL-10 datasets, and comparable results 

to the state-of the-art in supervised learning experiments on the NUS-WIDE and MS-COCO datasets. Ex- 

perimental results also verify that our proposed method is more robust against noisy image labels as 

expected. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multi-label image classification is a challenging task, and it has

ecently attracted great attention from the research community.

he majority of the studies on image classification focus on single-

abel classification, and very successful methods have been pro-

osed for this task [1,2] . However, using a single label for an im-

ge is generally not appropriate for real-world applications, as the

ajority of the images can be associated with multiple labels to

escribe its semantic contents, such as objects, scenes, actions and

ttributes. A successful multi-label classification framework should

e able to learn the association between visual features and these

omplex tags. 

Popularization of digital cameras, web-based services and social

etworks let users to upload, share and tag a tremendous number

f images everyday. Clearly, there is an emerging need to correctly

abel images, learn from them and retrieve relevant ones when

eeded. Manually labeling all images is too costly and difficult in

ractice. As a consequence, image labels are mostly collected by

semi) automatic tools using image file names, the text surround-

ng the image or tags provided by the users. This type of labeling
∗ Corresponding author. 

E-mail address: burakbenligiray@eskisehir.edu.tr (B. Benligiray). 

i

 

a  

ttps://doi.org/10.1016/j.patcog.2019.107164 

031-3203/© 2019 Elsevier Ltd. All rights reserved. 
auses several problems. One of these is the fact that the labels are

oing to be incomplete for most cases. Consider Fig. 1 as an exam-

le: A human annotator may label this image as car and road , but

n addition to these, labels such as tires, car lights, car mirrors, driv-

ng are also correct. Similarly, in a hierarchical class model like Im-

geNet, labeling an object to be a poodle logically implies that it is

 dog and a mammal as well. Those labels will often be absent be-

ause they are obvious. Besides, a poodle may still have additional

ttributes, such as female and pink . Even in a user-model-free pure

ttribute model, there are usually statistical image relationships.

or example, zebra coincides with striped , and car typically implies

heel . ImageNet nominally has only one labeled class per image,

ut in reality, several others are often present, and even visually

ominant. Therefore, a successful classification system must not

onsider all absent labels as negatives. Another property of image

abels is that they are unlikely to be independent or uncorrelated.

n fact, recent studies [3–7] show that there is a strong correla-

ion among the labels of multi-labeled images. For example, car

nd pedestrian usually appear together, but pet and whale are rarely

een together. Therefore, there may be a need for modeling label

ependencies and adopting a learning algorithm that utilizes this

nformation. 

The final critical problem with the labels is that some of them

re incorrect, as they are mostly collected by (semi) automatic

https://doi.org/10.1016/j.patcog.2019.107164
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107164&domain=pdf
mailto:burakbenligiray@eskisehir.edu.tr
https://doi.org/10.1016/j.patcog.2019.107164
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Fig. 1. Although a human annotator is going to use labels such as car, road for this 

image, additional labels such as tires, car lights, driving can also be used for labeling. 
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{  
tools. For instance, Sun et al. [8] recently collected one of the

largest visual object classification datasets, JFT-300M, which has

more than 375M noisy labels for 300M images. The labels are col-

lected automatically, which has resulted in many missing and noisy

labels. Although the authors use sophisticated algorithms to clean

the noisy labels, approximately 20% of the labels are still estimated

to be erroneous. These kinds of examples show the urgent need for

a robust multi-label learning algorithm. 

Our contributions: In this paper, we introduce a semi-

supervised multi-label image classification method that can learn

from images with noisy and incomplete labels, and even unlabeled

images. In order to achieve this, we interchange the hinge loss

used in the weighted approximate ranking method [9] with the

more robust ramp loss. To utilize unlabeled image data, we use

label propagation by assigning labels to the unlabeled data based

on their nearest labeled neighbors in the feature space, resulting

in bootstrapping. Our proposed classifier can both be used with

hand-crafted features, or jointly trained with the feature extractor.

To achieve the latter, we integrated the proposed classifier within a

deep convolutional neural network by using it as the loss function

of the final classification stage. 

Related work: Various methods have been proposed for multi-

label image classification over the past few years. One of the most

common approaches is based on label ranking, which has been

applied to powerful deep convolutional neural networks success-

fully. Pair-wise ranking loss was first used in [10] , and it was

extended to weighted approximate ranking (WARP) in [9,11] . Wu

et al. [12] used WARP for weakly labeled image classification prob-

lems. Kanehira and Harada [13] also used ranking and proposed

multi-label PU (positive and unlabeled) method, which mostly fo-

cused on positive labels and took into consideration the fact that

absent labels are not necessarily negative as we have described

earlier. However, they assume that all assigned positive labels are

definitely correct, thus their method is not very robust against

noisy labels. Lapin et al. [14–16] introduced methods that optimize

top-k error loss functions, such as smooth top-k hinge loss and

top-k softmax loss, and they reported significant improvements on

some multi-label image data sets. 

Several methods treat the multi-label classification problem

as a deep neural network-based object detection problem, and

they follow a similar strategy to the R-CNN method of Girshick

et al. [17] , which returns promising candidate regions from an

image and classifies them with a CNN. To achieve this, Wei

et al. [18] use BING to return candidate regions, and a hypothesis

extraction method to reduce and refine these regions using NCuts

clustering. The resulting regions are then fed into a CNN classifier

as in [17] . Differently from these, Zhang et al. [6] and Karpathy and

Fei-Fei [3] both use a CNN to extract candidate regions and these

regions are fed to an RNN to model label dependencies. However,

both methods require bounding box annotations, which can be
een as a major limitation, since bounding box annotation is even

ore costly than labeling itself. Similar to these, [4] and [5] also

se CNN and RNN together, but they feed the entire image to CNN

nd use the resulting output in an RNN to produce multiple depen-

ent labels. Therefore, these methods do not require bounding box

nformation. More recently, Zhu et al. [19] have introduced a multi-

abel image classification method that exploits both semantic and

patial relations between labels with only image-level supervision.

u et al. [20] proposed a deep dual-stream neural network method

hat utilizes local features and global image pairs for multi-label

mage classification. Zhang et al. [21] introduced an online deep

eural network classifier that can detect novel classes. 

Multi-labeled images are also studied in the context of large-

cale image retrieval [22–24] and dimensionality reduction [25,26] .

mong these, [22] and [24] propose deep neural network-based

ethods for jointly learning feature representations and compact

ash codes. These methods work very well on simple single-label

atasets such as CIFAR-10 and ImageNet, where the objects ap-

ear in the middle of the image. However, they are significantly

utperformed on challenging multi-label datasets by the method

n [23,27] , where a hashing method that is robust to noisy labels

nd pre-computed CNN features are used. Gordo et al. [28] show

hat neural net-based hashing methods are very sensitive to noisy

abels. All these results demonstrate the importance of using ro-

ust loss functions for multi-labeled data. In the context of dimen-

ionality reduction, Kumar et al. [26] introduced a dimensionality

eduction method that embeds both the feature vectors and la-

el vectors onto a low-dimensional space. Mikalsen et al. [25] on

he other hand proposed a semi-supervised dimension reduction

ethod that can handle noisy multi-labeled images. In addition

o these methods, there are more general multi-label classification

ethods using Support Vector Machines (SVM) or kernel meth-

ds [29] , nearest neighbors [30] , and decision trees [31] . A more

omprehensive survey of multi-label classification methods can be

ound in [32] . 

Recently, there have been efforts [33–38] to train deep neu-

al networks in a semi-supervised way to utilize both labeled and

nlabeled data, as neural nets require a very large amount of

ata due to their size. Haeusser et al. [34] proposed a sophisti-

ated semi-supervised deep neural network method that utilizes

earning by association. Their proposed method encourages cor-

ect association cycles between the embeddings of labeled and un-

abeled samples. In [35] , a simple method is introduced, which

ssigns pseudo-labels to unlabeled data based on maximum pre-

icted class membership probabilities, and trains a neural network

n a supervised manner by using both original and predicted la-

els. In a recent work, Wang et al. [39] have proposed a semi-

upervised deep neural network method that alternates iteratively

etween growing convolutional layers and selecting confidently

seudo-labeled data. There are also other semi-supervised learn-

ng methods that use auto-encoder structures [33] , generative ad-

ersarial networks (GANs) [37,38,40] , or label propagation [25] . In

ddition to these methods, there are also attempts to improve ac-

uracy based on introduction of new regularization techniques or

esigning new neural network architectures. For example, Sprin-

enberg et al. [41] omit pooling layers and propose a network

olely consisting of convolutional layers whereas De Vries and Tay-

or [42] introduce cutout technique, which masks out contiguous

ections of the input images to improve the robustness of deep

eural network models. 

. Method 

In this work, we consider the case with l multi-labeled

mages L = { (I 1 , y 1 ) , . . . , (I l , y l ) } and u unlabeled images U =
 

I l+1 , . . . , I l+ u } , where I i represents the image, and y i ∈ { −1 , 1 } m is
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Fig. 2. The illustration of the Ramp loss function, R s (t) = min (1 − s, max (0 , 1 − t)) . The Ramp loss can be written as the difference of two convex Hinge losses, R s (t) = 

H 1 (t) − H s (t) , where H a (t) = max (0 , a − t) is the classical Hinge loss. Here, we set s = −0 . 80 . 
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1 It is available at http://mlcv.ogu.edu.tr/supp.pdf . 
he corresponding label vector with −1 indicating a negative and

 indicating a positive class. As mentioned earlier, labels of im-

ges are usually collected from image file names, nearby text or

ags provided by users. Therefore, some labels may be incorrect

r missing. Let us denote the visual feature vector of an image as

 i ∈ IR 

d . Supervised and semi-supervised learning process cases are

s described below. 

.1. Supervised learning 

Assuming that C + x i 
and C −x i denote the sets of indices with pos-

tive and negative labels for x i , our proposed classifier solves the

ollowing optimization problem 

min 

W 

λ

2 

trace (W 

� W ) + 

l ∑ 

i =1 

C + x i ∑ 

j=1 

C −x i ∑ 

k =1 

L (r j ) R s (w 

� 
j x i − w 

� 
k x i ) 

+ κ
l ∑ 

i =1 

m ∑ 

j=1 

R s (y i j (w 

� 
j x i )) , (1) 

here L (.) is a weighting function for different ranks, r j is the

ank of the i th image sample for the j th class, R s (t) = min (1 −
, max (0 , 1 − t)) is the ramp loss function and −1 < s ≤ 0 is a pa-

ameter that must be set by the user. Note that w j corresponds

o the j th column of the d × m weight matrix W , λ is the regu-

arization parameter that must be set by the user, and κ is also a

ser-defined parameter that controls the weight of the ramp loss.

s illustrated in Fig. 2 , the ramp loss can be written as the dif-

erence of two convex hinge losses, R s (t) = H 1 (t) − H s (t) , where

 a (t) = max (0 , a − t) is the classic hinge loss. In our experiments,

e set s = −0 . 80 . 

The first two terms in our optimization problem ( Eq. (1) ) are

imilar to WARP [9,11] in the sense that L (.) is used to control the

anking. The first term in the optimization problem is a regulariza-

ion term to ensure that the method can also be used with hand-

rafted features. When the proposed method is integrated into a

eep neural net, this regularization term is omitted, as described

elow. Differently from WARP, we use the robust ramp loss func-

ion instead of the classic hinge loss in the second term of the op-

imization problem. In addition, WARP does not include the last

erm in the optimization problem, which enforces the resulting

lassifier to return positive scores ( > 1) for positive class samples

nd negative scores ( < −1 ) for negative class samples. 

We use the same weighting function as in [9,12] , which is de-

ned as 

 (r) = 

r ∑ 

j=1 

α j , (2) 
here αj is set to 1/ j . To compute rank r j , we sample negative la-

els until we find a violation, i.e. (1 − w 

� 
j 

x i + w 

� 
k 

x i ) ≥ 0 . Then, the

ank is calculated according to the following formulation 

 j = 

⌊ 

m − 1 

q 

⌋ 

, (3) 

here q is the number of sampling trials. It should be noted that

he function L (.) controls label rankings during optimization. More

recisely, L (.) assigns a small weight to the loss if a positive label

s ranked at the top in the label list, whereas it assigns a large

eight to push the positive label to the top if the positive label is

ot ranked at the top of the list. 

As illustrated in Fig. 2 , there is no bound on the hinge loss.

herefore, it produces very large losses for incorrect labels far from

he margin. As a result, these mislabeled samples play a dominant

ole in determining the weight matrix, which deteriorates the over-

ll classification performance. Using ramp loss instead of hinge loss

s more advantageous: When ramp loss is used, a mislabeled im-

ge sample can only introduce a limited amount of loss, regardless

f its position with respect to the margin. Therefore, the misla-

eled samples cannot dominate the optimization. Similarly, in the

ase of missing labels, the score of a missing class can be higher

han a positive labeled class. A good learning algorithm should not

enalize such cases heavily as they are not actual mistakes. As in

he previous case, using ramp loss is better suited for such cases,

ecause it restricts extreme penalties. 

Superiority of ramp loss over hinge loss is well-proven and

emonstrated in the literature for both supervised and trans-

uctive learning [23,43] , but hinge loss became more popu-

ar as it is convex, whereas ramp loss is not. However, Plessis

t al. [44] demonstrate the necessity of using the non-convex ramp

oss instead of the convex hinge loss while learning from positive

nd unlabeled data both theoretically and empirically. Therefore,

he use of non-convex functions for multi-labeled semi-supervised

lassification tasks is essential. Lastly, it should be noted that the

econd term and the last term of the optimization problem ( Eq. 1 )

ork in a complementary way in the sense that they both aim to

aximize the margin between the positive and negative classes.

esides, adding the last term especially improves performance on

lassification problems in which the images have a single posi-

ive class (see the Supplementary Material 1 for more discussion on

his). 

To solve the described optimization problem, we use the

tochastic gradient (SG). The proposed method is fast and scales

ell with the amount of data, as it was proven that the run time

f SG does not directly depend on the size of the training set for

hese types of quadratic loss functions [45] . 

http://mlcv.ogu.edu.tr/supp.pdf
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2.2. Semi-supervised learning 

Semi-supervised learning algorithms try to improve the gen-

eralization performance by using unlabeled data. Majority of the

semi-supervised and transductive learning methods are built on

the cluster assumption, which states that the decision boundary

should lie in low-density regions to improve generalization per-

formance. Until now, almost all binary transductive learning algo-

rithms have used the hinge loss cost H 1 (| w 

� x i + b| ) and its vari-

ants with unlabeled data. This cost function pushes the decision

boundaries to less dense areas. It must be noted that to use this

cost, the classifier must return positive scores for positive class

samples and negative scores for negative class samples. WARP does

not necessarily satisfy this condition, which is why we introduced

the last term in our optimization function ( Eq. (1) ). In our multi-

label classification setting, we can enforce this loss as 

min 

W 

λ

2 

trace 
(
W 

� W 

)
+ 

l ∑ 

i =1 

C + x i ∑ 

j=1 

C −x i ∑ 

k =1 

L (r j ) R s 

(
w 

� 
j x i − w 

� 
k x i 

)

+ κ
l ∑ 

i =1 

m ∑ 

j=1 

R s (y i j 

(
w 

� 
j x i ) 

)
+ η

l+ u ∑ 

i = l+1 

m ∑ 

j=1 

H 1 

(∣∣w 

� 
j x i 

∣∣), (4)

where η is a user defined parameter that controls the weight of

the loss associated to the unlabeled samples with respect to the

labeled samples. The classifier trained by solving this optimization

problem was shown to be more accurate experimentally. However,

this improvement was not very significant even though the major-

ity of the training data was unlabeled. Furthermore, we observed

a slight decrease in the accuracy as the number of unlabeled

data samples is increased. In contrast, the semi-supervised meth-

ods that use label propagation report significant improvements as

the number of unlabeled data samples is increased [46,47] . These

methods use the assumption that the nearest neighbors in the fea-

ture space tend to have the same labels by transitivity, thus we can

pass the labels of labeled samples to their nearest unlabeled neigh-

bors. By following this idea, we found the nearest labeled sample

of each unlabeled data sample and computed a similarity score by

using the heat kernel function 

s i = exp 

(
−d(x i , ̃  x i ) 

t 

)
, i = l + 1 , . . . , l + u, (5)

where d(x i , ̃  x i ) is the Euclidean distance between the unlabeled

data sample x i and its labeled nearest neighbor ˜ x i . Note that this

function is widely used for measuring the similarity between sam-

ples in graph-based methods, including spectral clustering. The

heat kernel function returns similarity scores between 0 and 1,

and scores closer to 1 indicate that the samples are very close to

each other, whereas scores closer to 0 mean that the samples are

far from each other. Using the heat kernel function for comput-

ing similarity is important, as there may be image samples among

unlabeled data that do not come from any of the classes used for

training. The similarities returned for those irrelevant image sam-

ples will be low, thus their effect to the learning process will be

diminished. In the proposed semi-supervised learning method, we

pass the labels of labeled data samples to their nearest unlabeled

samples, and the similarity score is used to control the reliability

of this label assignment. By setting s i = 1 , i = 1 , . . . , l, for labeled

samples, our final semi-supervised learning objective function can

be written as 

min 

W 

λ

2 

trace (W 

� W ) + 

l+ u ∑ 

i =1 

C + x i ∑ 

j=1 

C −x i ∑ 

k =1 

s i L (r j ) R s (w 

� 
j x i − w 

� 
k x i ) 

+ κ
l+ u ∑ 

i =1 

m ∑ 

j=1 

s i R s (y i j 

(
w 

� 
j x i ) 

)
. (6)
ere, using a robust ramp loss is very important, as the la-

el propagation procedure may have generated many incor-

ect labels for unlabeled data. In contrast, the non-robust

inge loss can be adversely affected by these mislabeled image

amples. 

Our proposed semi-supervised multi-label classifier uses the

ptimization problem given in ( Eq. (6) ), and this optimiza-

ion problem can be solved using the SG algorithm given in

lgorithm 1 below. For hand-crafted features, we compute the sim-

larities at the beginning of the algorithm and pass the labels to

he unlabeled data. These assignments stay permanent until the

nd of the algorithm. However, while we are training deep neu-

al nets, the visual features change over time, thus we update

he similarities and label assignments as described in the next

ection. 

lgorithm 1 Stochastic Gradient Based Solver for Robust Semi-

upervised Multi-Label Classifier. 

nitialize 

 , T > 0 , λ > 0 , κ > 0 α0 > 0 , εw 

> 0 , s i , i = 1 , . . . , l + u . 

escription: 

for t ∈ 1 , . . . , T do 

αt ← α0 /t;
W t−1 ← W t ;
for i ∈ randperm (l + u ) do 

– Compute L (r j ) for sample x i by using (2), 

– Compute sub-gradients with respect to the first term of

the optimization, 

g t 
W 

= 

λW 

l+ u ;
– Compute sub-gradients with respect to the second term

of the optimization, 

g t w j 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−s i L (r j ) x i 
l+ u , if (1 − w 

� 
j 
x i + w 

� 
k 

x i > 0) 

& (s − w 

� 
j 
x i + w 

� 
k 

x i < 0) 

0 , otherwise . 

g t w k 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

s i L (r j ) x i 
l+ u , if (1 − w 

� 
j 
x i + w 

� 
k 

x i > 0) 

& (s − w 

� 
j 
x i + w 

� 
k 

x i < 0) 

0 , otherwise . 

– Compute sub-gradients with respect to the third term of

the optimization, 

g t w j 
= 

{−s i Lκx i 
l+ u , if (1 − w 

� 
j 
x i > 0) & (s − w 

� 
j 
x i < 0) 

0 , otherwise . 

– Update weights, 

W t ← W t − αt g 
t 
W 

;
end for 

if ‖ W t − W t−1 ‖ < εw 

, break 

end for 

.3. Robust semi-supervised multi-label deep neural networks 

In contrast to applying a classifier to hand-crafted features,

eep convolutional neural networks enable us to learn image

eatures and classifiers simultaneously. However, how to handle

ulti-labeled images with deep convolutional neural networks

till remains an open problem. CNN based systems perform well

n synthetic-like single labeled data sets where the foreground

bjects appear in the middle of the image. In contrast, these

etworks are significantly outperformed by classifiers applied to

and-crafted features on more challenging multi-labeled image

ata sets where a variety of objects with different scales appear

n images [23] . 
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2 https://github.com/bbenligiray/rml-cnn/ 
To train the proposed method for feature extraction and clas-

ification jointly, we integrate the proposed classifier to the deep

onvolutional neural networks and call the resulting method as Ro-

ust Multi-label Convolutional Neural Network (RML-CNN). In or-

er to achieve this, we omit the first regularization term of the op-

imization problem ( Eq. (6) ), and optimize only for the remaining

erms, as various regularization methods are already implemented

n deep learning frameworks. For instance, Caffe [48] allows users

o select L1 or L2 norm-based regularizers controlled by the weight

ecay parameter. In the proposed method, we take the gradients

f the second and the last term separately, as the former focuses

n maximizing the difference between positive and negative class

cores, and requires updating two weight vectors at the same time.

s indicated earlier, ramp loss can be written as the difference of

wo convex hinge losses, thus the gradient of the loss J for the sec-

nd term with respect to w j and w k can be found by using 

 ≡ (1 − w 

� 
j x i + w 

� 
k x i > 0) & (s − w 

� 
j x i + w 

� 
k x i < 0) 

∂ J 

∂w j 

= 

{−s i L (r j ) x i 
l+ u , if ψ is True 

0 , otherwise 
(7) 

∂ J 

∂w k 

= 

{
s i L (r j ) x i 

l+ u , if ψ is True 

0 , otherwise 

In a similar manner, the gradient of the last term with respect

o w j can be computed by using 

∂ J 

∂w j 

= 

{−s i κx i 
l+ u , if (1 − w 

� 
j 
x i > 0) & (s − w 

� 
j 
x i < 0) 

0 , otherwise 
(8) 

hese gradients are then propagated back by using the chain rule.

t is better to update similarity scores in each epoch, but this pro-

ess will be too slow since it requires to compute all pair-wise

istances between labeled and unlabeled data samples. Therefore,

o alleviate the computational burden, we update the similarity

cores and the labels of unlabeled data at every 20 epochs for the

emi-supervised case, and each epoch sees all training data (both

abeled and unlabeled). To initialize the scores and labels of the

nlabeled data at the beginning of the algorithm, we use the CNN

odel trained only by using labeled data. 

.4. Setting design parameters and implementation details 

There are two parameters of the proposed method that must be

et by the user: the regularization parameter λ and the weight κ
f the ramp loss that enforces the classifier to have positive scores

or positive class samples and negative scores for negative class

amples, as seen in Eq. 6 . For deep neural nets, the regularization

arameter is commonly called weight decay. The common prac-

ice is to set weight decay to 0.0 0 0 01 for most deep neural net-

ork architectures, thus we tried values closer to this number. We

btained the best results for 0.0 0 05 on validation data for semi-

upervised learning experiments, whereas the best validation ac-

uracy is obtained by 0.0 0 0 05 for supervised learning experiments.

or κ , we set it to 5 for all experiments, and the results show that

alues between 2 and 8 produce similar and good results. Thus, we

et κ to the mean of these two values. 

We used the ResNet-101 architecture [49] , and trained it with

he SGD algorithm. Mini-batches of size 96 were used in the exper-

ments. The momentum parameter was set to 0.9, and we initial-

zed the weights both randomly and by using the weights of a pre-

rained network. For semi-supervised learning experiments, the

earning rate was set to 0.001 for randomly initialized models, and

.0 0 01 for fine-tuned models. Using a smaller value of learning

ate for fine-tuned models yields better results since the network

s already started with reasonable weights. On the other hand, we
eed a higher value of learning rate for randomly initialized mod-

ls to speed-up convergence. The learning rate was kept fixed for

emi-supervised learning experiments. For supervised learning ex-

eriments, the learning rate was started from 0.0 0 0 05, and di-

ided by 10 at the 10Kth and 16Kth iterations. Semi-supervised

earning experiments were conducted using 4 NVIDIA GTX 1080

8 GB memory) GPUs, whereas supervised learning experiments

ere conducted using a Tesla K40 (12 GB memory) GPU. Lastly,

e used data augmentation in all experiments. 

. Experiments 

We tested the proposed methods 2 on four visual object clas-

ification datasets: CIFAR-10, STL-10, NUS-WIDE, and MS-COCO.

IFAR-10 and STL-10 are single-label datasets. We experimented

n these to compare our semi-supervised learning method to

he state-of-the art, as the recent semi-supervised methods are

enerally tested on these datasets. NUS-WIDE and MS-COCO are

ulti-label image datasets that do not contain unlabeled data. As

he network architecture, we used the recently proposed ResNet-

01 [49] , which performs very well for many classification tasks.

o compare our cost functions, we also implemented WARP with

he same network. 

To assess the performance, we used the classical classification

ccuracy for single-label datasets, whereas we used precision, re-

all and F1 measures computed based on the top-3 highest ranked

abels as in [9,19] for the multi-label datasets. In addition to these,

e also report mean average precision (mAP) scores obtained from

er-class average precisions for multi-label image classification ex-

eriments. 

.1. Experiments on semi-supervised learning 

.1.1. CIFAR-10 dataset 

The CIFAR-10 dataset includes 60K 32 × 32 images of 10 object

lasses: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and

ruck . 50K samples are used as training data and they are split into

 batches, whereas the remaining 10K samples are used for test-

ng. We randomly selected 40 0 0 labeled samples from each batch

s in [33] , and the remaining 46K samples are used as unlabeled

ata. This procedure is repeated 5 times for each batch, and the

nal accuracies are the averages over these trials. A mini-batch

ize of 96 was used. We conducted two sets of experiments. For

he first set of experiments, we started the training from scratch

y random initialization for all tested cost functions. In the sec-

nd case, we applied fine-tuning by using the weights of a model

rained on the ILSVRC 2013 dataset. To be able to use the images

ith the pretrained model, we resized all images to 256 × 256. 

Results are given in Table 1 . It should be noted that WARP,

oftmax, and the proposed methods RML-CNN and SS-RML-CNN

re all integrated into the same ResNet-101 network, and therefore

hey are directly comparable. The other methods given in the table

se different type of network structures, but they are trained and

ested by using the same experimental settings we have used here.

he best accuracy is achieved by the proposed semi-supervised

ethod using ILSVRC initialization, which is followed by the net-

orks using softmax and RML-CNN. The proposed method signif-

cantly outperforms all other recent state-of-the-art methods, as

ell as WARP. The accuracies obtained by random initialization are

uite low for all tested losses since there are very few examples for

uch a wide and deep network structure. Using unlabeled data sig-

ificantly improves the results over supervised RML-CNN. The im-

rovement is especially very high for the deep networks using ran-

om initialization. More precisely, the proposed semi-supervised
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Fig. 3. Example images from the STL-10 dataset. The images shown in the first five rows are from the 10 classes, whereas the last row shows unlabeled examples that do 

not belong to the 10 classes in the labeled data. 

Table 1 

Average classification accuracies on the CIFAR-10 

dataset. 

Method Accuracy (%) 

RML-CNN (ILSVRC init.) 89.24 ± 0.3 

SS-RML-CNN (ILSVRC init.) 91.46 ± 0.2 

WARP (ILSVRC init.) 85.41 ± 0.4 

Softmax (ILSVRC init.) 89.32 ± 0.4 

RML-CNN (random init.) 52.37 ± 2.4 

SS-RML-CNN (random init.) 58.86 ± 1.7 

WARP (random init.) 50.52 ± 0.5 

Softmax (random init.) 51.46 ± 1.1 

Haeusser et al. [34] −−
DGL [39] 82.44 ± 0.3 

Improved GAN [37] 81.37 ± 2.3 

ALI [40] 82.01 ± 1.6 

Ladder Network [33] 79.60 ± 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Average classification accuracies on the STL-10 

dataset. 

Method Accuracy (%) 

RML-CNN (ILSVRC init.) 91.11 ± 0.3 

SS-RML-CNN (ILSVRC init.) 94.1 ± 0.2 

WARP (ILSVRC init.) 85.63 ± 0.6 

Softmax (ILSVRC init.) 91.34 ± 0.3 

RML-CNN (random init.) 40.00 ± 0.9 

SS-RML-CNN (random init.) 44.25 ± 0.8 

WARP (random init.) 39.15 ± 0.7 

Softmax (random init.) 39.27 ± 1.7 

Haeusser et al. [34] 81 . 00 ± −−
Huang et al. [50] 76.80 ± 0.3 
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I  
method introduces approximately 6.5% improvement over the su-

pervised one. WARP does not perform well compared to softmax,

as the dataset is composed of single-label examples. However, the

proposed supervised method produces comparable or better re-

sults than softmax. 

3.1.2. STL-10 dataset 

The STL-10 dataset also includes images from 10 classes as in

CIFAR-10. However, the images are of higher resolution (96 × 96),

and the dataset is specifically developed for unsupervised and

semi-supervised learning. This dataset includes 5K labeled sam-

ples and 100K unlabeled samples. Unlabeled data includes im-

ages from the 10 classes, as well as some additional classes that

are not present in the labeled set. In contrast, the unlabeled data

from the CIFAR-10 dataset only include images from the 10 classes.
ome images from the STL-10 dataset are illustrated in Fig. 3 . This

ataset is split into 10 pre-defined folds, where each fold contains

00 labeled images per class. The test set is composed of 8K im-

ges. We used 10 0 0 labeled samples provided in each fold and all

nlabeled data for learning and repeated this procedure for each

old. The final accuracy is the averages of accuracies obtained from

0 folds. 

Accuracies are presented in Table 2 . The results are similar to

he results of the CIFAR-10 dataset in the sense that the proposed

emi-supervised method again achieves the best accuracy, followed

y softmax and RML-CNN. ILSVRC initialization produces much

igher accuracies compared to random initialization for all tested

ethods. WARP performs worse than both softmax and RML-CNN

or ILSVRC initialization, but its accuracy is similar to these meth-

ds for random initialization. Our reported results are based on 10

epetitions, but Haeusser et al. [34] performs only 1 experiment.

t should be noted that the proposed methods significantly out-
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Table 3 

Accuracies on the NUS-WIDE dataset on 81 classes for top-3 highest ranked labels. 

Method P-C R-C F1-C P-O R-O F1-O mAP 

RML-CNN 44.3 54.8 45.3 55.7 69.0 61.7 57.4 

WARP 40.2 51.8 42.2 53.9 66.7 59.7 48.5 

Softmax 31.7 31.2 31.4 47.8 59.5 53.0 –

WARP [9] 31.7 35.6 33.5 48.6 60.5 53.9 –

CNN + RNN [4] 40.5 30.4 34.7 49.9 61.7 55.2 –

RLSD [6] 44.4 49.6 46.9 54.4 67.6 60.3 54.1 

ResNet-107 (binary relevance) [19] 46.7 56.8 46.9 55.9 69.2 61.8 59.5 

ResNet-101 (binary relevance) [19] 46.4 55.3 47.0 55.9 69.2 61.8 60.1 

CNN + RMLC (ours) 48.2 56.0 48.8 55.9 69.0 61.8 58.8 

Table 4 

Accuracies on the MS-COCO dataset on 80 classes for top-3 highest ranked labels. 

Method P-C R-C F1-C P-O R-O F1-O mAP 

RML-CNN 62.4 61.1 59.8 62.8 65.4 64.1 71.5 

WARP 60.7 59.8 58.5 61.5 64.1 62.8 63.2 

WARP [9] 59.3 52.5 55.7 59.8 61.4 60.7 –

CNN + RNN [4] 66.0 55.6 60.4 69.2 66.4 67.8 –

RLSD [6] 67.7 56.4 61.5 70.5 59.9 64.8 67.4 

ResNet-101 (binary relevance) [19] 65.3 62.6 61.3 64.1 66.8 65.4 75.2 

CNN + RMLC (ours) 64.9 62.0 61.5 64.1 66.8 65.5 75.2 

p  

s

3

3

 

a  

b  

a  

r  

T  

M  

a  

a  

m

 

a  

s  

p  

1  

i  

o  

R  

i  

t  

c  

t  

b  

1  

p  

p  

b  

t

o

(

w

T

3

 

m  

s  

i  

a  

p

 

g  

R  

f  

o  

c  

t  

C  

s  

m  

F  

e  

a  

d

3

 

d  

r  

a  

i  

C  

c  

p

 

c  

t  

b  
erform both the method of Haeusser et al. [34] and the previous

tate-of-the-art method of [50] , which achieves 76.8% accuracy. 

.2. Experiments on multi-label learning 

.2.1. NUS-WIDE dataset 

This dataset contains 269, 648 images from Flickr, which are

nnotated manually. There are 81 categories, with 2.4 category la-

els per image on average. In addition to the objects classes, there

re event/activity names among the labels such as swimming and

unning , as well as scene/location names such as airport or ocean .

he officially provided train/test split is used in our experiments.

ore precisely we use 161, 789 images for training and validation,

nd 107, 859 images for testing. It should be noted that we learn

ll 81 categories, as opposed to some methods that use only the

ost frequent 21 categories. 

Results are given in Table 3 . It should be noted that RML-CNN

nd WARP given at the top of the table are integrated into the

ame network again, thus they are directly comparable. The pro-

osed method, RML-CNN, yielded lower results than the ResNet-

01 architecture with binary relevance cost for multi-label learn-

ng [19] . We trained the same network with the provided code and

btained slightly lower results compared to the proposed method

ML-CNN. 3 Therefore, we also conducted new experiments by us-

ng the CNN features of the trained model provided by the au-

hors of [19] . In this setting, we treated the CNN features as hand-

rafted features and then trained our classifier using the cost func-

ion ( Eq. (1) ). The resulting classifier (CNN + RMLC) achieves the

est P-C, F1-C, P-O, and F1-O scores. Especially, its F1-C score is

.8% better compared to the results of Zhu et al. [19] . Both of the

roposed methods, RML-CNN and CNN + RMLC, significantly out-

erform WARP. It should be noted that the RLSD method uses

ounding box information for multi-label image classification, yet

he proposed methods still outperform it by a small margin. 
3 We trained the network using the code and parameters provided by the authors 

f Zhu et al. [19] . The authors of Zhu et al. [19] use 4 GPUs with a batch size of 96 

i.e., 24 images per GPU, due to memory limitations). Since we had a single GPU, 

e collected gradients for 96 images in 4 mini-batches, and then made the updates. 

he difference may be due to this procedure. 

t  

a  

f

 

t  

t  

a  
.2.2. MS-COCO dataset 

The Microsoft COCO (MS-COCO) dataset [51] is a large-scale

ulti-label benchmark dataset collected for several vision tasks

uch as recognition, segmentation and captioning. The training set

ncludes 82, 783 images, whereas the test set includes 40, 504 im-

ges. The objects are categorized into 80 classes and there are ap-

roximately 2.95 object labels per image. 

The accuracies based on the top-3 highest ranked labels are

iven in Table 4 . As in the previous experiment, in addition to

ML-CNN, we also conducted new experiments by using the CNN

eatures of the ResNet-101 trained model provided by the authors

f Zhu et al. [19] . We again treated the CNN features as hand-

rafted features and trained our classifier using the cost func-

ion ( Eq. (1) ). The best F1-C scores are achieved by the proposed

NN + RMLC and RSLD methods, whereas the best mAP and R-O

cores are obtained by the proposed CNN + RMLC and ResNet-101

ethod of Zhu et al. [19] . CNN + RNN achieves the best P-O and

1-O accuracies, and RSLD also obtains the best P-C accuracy. How-

ver, it should be kept in mind that RSLD needs bounding box

nnotations, which are not available for most visual recognition

atasets. 

.3. Experiments with noisy data 

To demonstrate the robustness of the proposed method, we

esigned an experiment where image labels are deliberately cor-

upted. In this experiment, we used 5 batches of 40 0 0 labeled ex-

mples from the CIFAR-10 dataset, similar to the supervised exper-

ments in Section 3.1 . In the same vein, we subsampled the MS-

OCO and NUS-WIDE datasets while maintaining the class frequen-

ies, which allowed us to run many experiments across different

arameters. 

To corrupt the dataset, a subset is chosen randomly, and the

orresponding labels are altered stochastically, while maintaining

he class frequencies of the original dataset. The same subset of la-

els are gradually corrupted between 10% and 50% for all parame-

ers to reach consistent results. The models are initialized with Im-

geNet pre-trained models and the hyperparameters are optimized

or the illustrated metrics. 

The results are presented in Fig. 4 . The most apparent result is

hat RML-CNN outperforms WARP across all datasets and parame-

ers. The experiments with the MS-COCO and NUS-WIDE datasets

re done with both 10% and 20% of the dataset, which gave consis-
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Fig. 4. Classification performance on the CIFAR-10, MS-COCO and NUS-WIDE datasets with varying density of corrupted labels. 

Fig. 5. Saliency maps superimposed on the images as heat maps for visualization. The images are from the MS-COCO dataset, and guided backpropagation [41] is used to 

produce the saliency maps. Predictions are the classes for which the produced scores were positive. 
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tent results. Both RML-CNN and WARP performances degrade lin-

early as the ratio of degraded labels increases. We can observe that

using more data (i.e., 20%, instead of 10% of the dataset) provides

a constant improvement across all parameters. Finally, it is surpris-

ing to see that both methods manage to converge even when half

of the dataset is mislabeled. 

3.4. Qualitative results 

See Fig. 5 for qualitative results, for which we are going to pro-

vide commentary. The images are from the validation set of the

MS-COCO dataset. A saliency map is produced for each of them us-

ing guided backpropagation [41] , and these saliency maps are su-

perimposed on the original images as heat maps using the method

described in [52] . The labels in the subcaptions are gathered from

the dataset, while the predictions are the classes for which our

model has returned positive scores. 

The first column ( Fig. 5 a–d) showcases performance in clut-

tered scenes. The proposed method recognizes the objects cor-

rectly, and also produces appropriate saliency maps. The second

column ( Fig. 5 b–e) illustrates errors due to dataset imbalance. It
s much more difficult to gather a balanced multiclass dataset, and

hether if this is desirable is up to debate. The model tends to-

ards assigning higher scores for overly frequent classes (in this

ase, person ). Although rarely, this results in the said object being

ecognized even in very irrelevant contexts (e.g., Fig. 5 e). The fi-

al column ( Fig. 5 c–f) addresses underlying correlations between

lasses. For example, baseball bat is recognized in Fig. 5 c, solely

ecause there is a person with a baseball glove in the image. This

mplies that the CNN is able to model correlations between labels

y using the underlying features (i.e., features extracted from the

aseball glove increases the classification score for baseball bat).

n the other hand, the model is also capable of performing cor-

ectly when the context is incoherent. For example, a person is hit-

ing a frisbee with a golf club in Fig. 5 f, yet this does not trigger a

ports ball classification and the result is correct. 

. Conclusion 

This study argues that image labels in large-scale datasets are

ypically noisy and incomplete, and traditional methods using non-

obust loss functions may fail to classify them accurately. For such
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ases, it is advantageous to use loss functions that are more ro-

ust against noisy and missing labels. In this paper, we proposed

 robust semi-supervised method for multi-label image classifica-

ion. To this end, we interchanged the classic non-robust hinge loss

rom the WARP method with the robust ramp loss and added an-

ther loss term that encourages margin maximization. To incor-

orate the unlabeled image data in the learning process, we also

sed label propagation by assigning labels to the unlabeled data

ased on their closest labeled neighbors. Our proposed classifiers

chieved state-of-the-art results in semi-supervised classification

n CIFAR-10 and STL-10 datasets. The proposed classifiers also sig-

ificantly outperformed WARP on noisy datasets. Moreover, we ob-

ained comparable results to the state-of-the-art on multi-labeled

US-WIDE and MS-COCO datasets for multi-label classification. The

roposed classifiers are robust against noisy and missing image la-

els, but they do not explicitly model label dependencies. As a fu-

ure work, we are planning to add an RNN network to the current

NN network to build a structure that explicitly models such cor-

elations between labels in an end-to-end manner. 
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