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Abstract

We introduce a new algorithm for distance metric learning which uses pair-
wise similarity (equivalence) and dissimilarity constraints. The method is adapted
to the high-dimensional feature spaces that occur in many computer vision appli-
cations. It first projects the data onto the subspace orthogonal to the linear span
of the difference vectors of the similar sample pairs. Similar samples thus have
identical projections, i.e., the distance between the two elements of each similar
sample pair becomes zero in the projected space. In the projected space we find a
linear embedding that maximizes the scatter of the dissimilar sample pairs. This
corresponds to a pseudo-metric characterized by a positive semi-definite matrix
in the original input space. We also kernelize the method and show that this al-
lows it to handle cases with low-dimensional input spaces and large numbers of
similarity constraints. Despite the method’s simplicity, experiments on synthetic
problems and on real-world image retrieval, visual object classification, gender
classification and image segmentation ones demonstrate its effectiveness, yield-
ing significant improvements over existing distance metric learning methods.

Keywords: Semi-supervised distance learning, classification, clustering, image
retrieval, similarity constraints, discriminative common vector.

1. Introduction

In a wide range of computer vision problems including object classification,
segmentation and image and video retrieval, the performance depends critically on
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the similarity metric used to compare examples, so it is important to develop ef-
fective methods for learning distance metrics for such applications [1, 2, 3, 4, 5].
Measuring distances is comparatively simple when the features used are hand-
chosen to be independent and highly relevant, but in computer vision applications
with modern feature sets there are typically a great many features, many of which
are either highly correlated with other features or irrelevant for the task being
considered. This happens because at present, despite their redundancy, large and
comparatively generic modern feature sets typically give better performance than
smaller hand-chosen ones, and because vision problems are often somewhat open
with the most relevant features depending on the exact problem and dataset be-
ing considered. (E.g., when organizing image collections, it is possible to group
images in many different ways, based on objects that they contain, natural versus
built, outdoors versus indoors, etc.) When there are irrelevant and/or correlated
features, similarity judgements based on Euclidean feature space distances often
give unacceptable results, so it is necessary to learn more discriminative distance
metrics.

In the simplest forms of distance learning, explicit class labels are supplied
for the training samples, thus establishing a global notion of the similarity that is
to be learned. However there are many applications in which explicit labels are
not available, either because the underlying problem does not involve classes or
involves only poorly-defined ones, or owing to the high cost of supplying a full
labeling. In such cases, side information in the form of categorical similar / dis-
similar judgements linking pairs of examples may still be available at a reasonable
cost. For example in surveillance applications such as [4], objects (e.g. faces) ex-
tracted at roughly the same location in successive video frames can be assumed
to represent the same individual, whereas ones extracted at different locations in
the same frame must represent different individuals. In some applications such as
relevance-feedback based image retrieval [6] or interactive semi-supervised image
segmentation [2], such similarity judgements are actually the most natural form
of supervision.

This paper focuses on distance metric learning from similarity judgements
of this kind. Our strategy is to handle the similarity constraints first by project-
ing the data to a lower-dimensional subspace in which each similar pair becomes
an identical pair, and then to address the dissimilarity constraints by finding a
linear embedding that maximizes the distances between the projected dissimilar
pairs. There are several adavantages of this procedure: Projection onto the null
space is the optimal linear projection in the sense that it preserves the variance
along the orthogonal directions to the projection direction, hence the original dis-
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tance measure is best preserved. Moreover, as the experiments show, the resulting
method is particularly suitable for computer vision problems based on modern
high-dimensional feature sets since one does not need to approximate complex
distance model parameters.

2. Related Work

In recent years there has been a growing interest in methods for learning dis-
tance metrics due to their broad applications. Some of these approaches find the
desired distance function directly, while others find embeddings in which the Eu-
clidean distance serves as the new distance function. The two problems are equiv-
alent and we will present them interchangeably here. We only discuss methods
based on similarity judgments: ones that require explicit class labels [7, 8, 9, 10]
will not be considered here. A more comprehensive survey of distance metric
learning techniques can be found in [11].

Similarity judgement based distance learning methods modify their input dis-
tances to accommodate the given pairwise constraints, and at present most of them
focus on learning linear Mahalanobis-like distances parameterized by positive-
definite or semi-definite matrices. Xing et al. [12] used a convex programming
formulation under equivalence constraints to learn a full-rank Mahalanobis met-
ric. The metric is learned via an iterative procedure that involves projection and
eigen-decomposition in each step. Tsang & Kwok [13] formulated the problem as
a quadratic optimization one. They also extend their method to the nonlinear case
using the kernel trick. Shalew-Shwartz et al. [14] proposed a sophisticated online
distance metric learning algorithm that uses side information. The method incor-
porates the large margin concept, and the distance metric is modified based on two
successive projections involving an eigen-decomposition. Davis et al. [15] pro-
posed an information-theoretic approach to learn a Mahalanobis distance function.
They formulated the metric learning problem as that of minimizing the differential
entropy between two multivariate Gaussians under equivalence constraints on the
distance function. Yang et al. [11] proposed a Bayesian framework that estimates
a posterior distribution for the distance metric from the pairwise constraints. All
of the above algorithms attempt to learn full-rank distance metrics. This makes
them less suitable for high-dimensional computer vision problems, in which it is
usually more effective to learn lower-rank distance metrics or embeddings. To
this end, Cevikalp & Paredes [2] introduce a low-rank distance metric learning
algorithm based on sigmoid functions. A similar weakly-supervised method was
introduced in [16]. A semi-supervised low-rank Mahalanobis distance learning
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algorithm for high-dimensional spaces using log-determinant matrix divergence
was introduced in [17]. More recently, a sparse (low-rank) metric learning method
using Nesterov’s smooth optimization has been proposed for high-dimensional
data [18]. Unlike other methods, the sparse metric learning algorithm uses rela-
tive comparisons (given in terms of triplets) instead of pair-wise equivalence con-
straints and the authors showed that it outperforms competing methods. However,
they reported results on relatively small-dimensional data sets selected from UCI
repository rather than on challenging high-dimensional real-world datasets. An-
other sparse metric learning method using alternating linearization optimization
has been proposed in [19].

Graph-based methods that incorporate pairwise side information by modifying
the weights of the graph have also been proposed [20, 21, 22, 23, 24]. Their
major limitation is that they assume that local nearest-neighbor samples typically
have the same class label (c.f . local neighborhood-based nonlinear dimensionality
reduction methods in which each class is modeled as a manifold that is locally
close to linear). This is only true if the classes are sampled densely relative to the
inter-class spacing, which is hard to achieve with feasible training set sizes in high
dimensional problems with difficult-to-distinguish classes. As a result, the graph-
based approaches tend to perform poorly in practical vision problems because the
constraints that they assume become too noisy. To alleviate this problem, some
authors [25, 6] use multiple graphs which operate on different feature sets. Then,
they learn more reliable distance metrics by fusing those graphs with different
techniques.

A method that is more closely related to ours is Relevant Components Analysis
(RCA) [26]. It searches for an embedding that assigns large weights to the most
relevant dimensions and lower weights to less relevant ones, where relevance is
estimated using the pairwise similarity constraints. RCA does not incorporate
dissimilarity constraints and it is restricted to learning linear transformations in
the original input space. Tsang et al. [27] improved RCA and kernelized it. Hoi
et al. [5] proposed Discriminative Components Analysis (DCA), a method that
allows dissimilarity constraints to be incorporated into RCA and Kernel RCA.
Our approach is similar in spirit to DCA, but it overcomes a serious drawback of
DCA (see section 2.3).

Finally, there are some hybrid methods that unify clustering and metric learn-
ing into a common framework based on side information [28, 29]. Among these,
[29] is worth mentioning because it projects onto the null space of the similarity
constraints as we do.
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2.1. Metric Learning Under Side Constraints
Before presenting our method in its linear and kernelized forms, we summa-

rize the setting for distance metric learning under side constraints and sketch the
RCA and DCA approaches.

Let xi ∈ IRd, i = 1, . . . , N denote the samples of the training set. We are
given a set of side constraints in the form of similar and dissimilar pairs and we
aim to find a pseudo-metric that reflects the underlying relationships imposed by
them. We focus on pseudo-metrics of the form

dA(xi,xj) = ‖xi − xj‖A =
√

(xi − xj)>A(xi − xj), (1)

where A ≥ 0 is a symmetric positive semi-definite matrix. Equivalently, if q =
Rank(A) ≤ d, A can be written in the form A = WW> where W is a full-rank
rectangular matrix of size d× q, so that

‖xi − xj‖2
A = ‖W>xi −W>xj‖2, (2)

i.e. distances between points under the metric A are equivalent to Euclidean dis-
tances on their linear projections by W>.

2.2. Relevant Component Analysis (RCA)
The basic strategy of RCA is to identify irrelevant dimensions and reduce their

effects by assigning lower weights to them. RCA does not exploit dissimilarity
information. Similarity information is provided in the form of “chunklets”: groups
of two or more data samples that are considered “similar” (e.g. that belong to the
same class). Assume that we are given C chunklets with chunklet c containing
nc patterns {xc,1, ...,xc,nc}. RCA centers each chunklet then finds their combined
covariance matrix:

S =
1

n

C∑
c=1

nc∑
i=1

(xc,i − µc)(xc,i − µc)
>. (3)

Here, µc is the mean of chunklet c and n =
∑C

c=1 nc. The linear embedding of
RCA is then computed as W = S−1/2, so that the Mahalanobis distance matrix
becomes A = S−1. Note that this is singular unless the covariance has full-rank,
which certainly requires n ≥ d + C – something that is not possible in many
high-dimensional problems. Details of the kernelization of RCA can be found in
[27].
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It should be noted RCA attempts to learn a full-rank distance matrix in the
original input space. Therefore the number of parameters to be estimated is
the square of the dimensionality and we have only limited number of similar-
ity constraints in most of the real-world applications. As a result, learning an
effective full-rank distance matrix in high-dimensional spaces is impracticable by
RCA (The covariance matrix becomes singular and hence dimensionality reduc-
tion must be applied before RCA. But this may cause loss of important relevant
information)

2.3. Discriminative Component Analysis (DCA)
DCA can be seen as a weakly-supervised variant of classical direct Linear

Discriminant Analysis [30]. DCA assumes that dissimilarity constraints are also
supplied between some of the chunklets. Specifically, each chunklet c has a dis-
similarity set Dc whose elements are the chunklets (from the original C) that are
flagged as being dissimilar to c. The within-chunklet and between-chunklet scatter
matrices are then computed as follows

Sb =
1

m

C∑
c=1

∑
i∈Dc

(µc − µi)(µc − µi)
>,

Sw =
1

C

C∑
c=1

1

nc

nc∑
i=1

(xc,i − µc)(xc,i − µc)
>,

(4)

where m =
∑C

c=1 |Dc| is the total number of dissimilarity set entries. As in LDA,
DCA finds a set of orthogonal linear projection directions w that maximize the
ratio of the between-class and within-class scatters J(w) = w>Sbw

w>Sww
, assembling

W column-wise from these. If Sw is nonsingular, the maximum eigenvectors of
S
−1/2
w SbS

−1/2
w provide the solution. Since the matrix is typically non-symmetric,

its eigen-decomposition may be unstable. To circumvent this problem, the simul-
taneous diagonalization algorithm is often employed.

As with LDA and RCA, the above method can only be applied when the
within-chunklet scatter matrix Sw has full-rank. Otherwise, the dimensionality
must be reduced to avoid singularity, and as in RCA this can cause a considerable
loss of discriminative power unless it is done properly. Unfortunately, DCA takes
a very suboptimal route at this point. Instead of following the traditional LDA
approach, it first projects the data onto the range space of Sb under the assump-
tion that the null space of Sb does not contain any relevant information. This is
seldom correct, as illustrated in Fig. 1. For the two dissimilar chunklets shown in
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Figure 1: DCA chooses the line connecting the chunklet means as the optimal projection direction,
whereas the best separating direction is the dashed line, which can be found by following the
classical LDA method.

the figure, DCA chooses the line connecting their centers as the optimal projec-
tion vector: this is obviously a very suboptimal direction for separating them. See
[31, 32] for more details on this.

3. Proposed Method: SS-DCV

DCA method aims to maximize the classical LDA function criterion, J(w) =
w>Sbw
w>Sww

. However, this criterion is not appropriate since the maximization does not
have a unique solution when the dimensionality of the sample space is larger than
the number of similar sample pairs (this yields a rank deficient within-chunklet
matrix Sw). In this case, every projection vector w (and projection matrix W
whose columns includes these vectors) such that w>Sww = 0 and w>Sbw 6= 0
maximizes this criterion. Note that if Sw is singular, which is typically the case
for high-dimensional computer vision problems, one can create many projection
matrices by using combinations of projection vectors coming from the null space
of Sw. But these are not necessarily the optimal projection directions. On the other
hand, as we have shown in [31], the following null space based LDA criterion has a
unique maximum for the projection vectors with unit length and it also maximizes
the LDA criterion

J(W) = max
|W>SwW|=0

Trace(W>SbW) (5)

Our proposed method, Semi-Supervised Discriminative Common Vectors (SS-
DCV), works in the orthogonal complement of the span of the difference vec-
tors of the similar pairs (i.e. the null space of the scatter matrix SS of these
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pairs), finding a linear embedding that maximizes the scatter SD of the dissim-
ilar pairs (i.e. the analog of LDA’s between class scatter matrix) within this sub-
space. Specifically, we maximize the null spaced based LDA criterion J(W) =
Trace(W>SDW) under the constraints that the columns of W are orthonormal
and that W>SSW = 0 by using constraints rather than class labels. This can be
done either by finding an orthonormal basis for the span of SS and projecting SD

orthogonal to it, or by finding an orthonormal basis for the null space of SS and
projecting SD onto it, followed by estimation of the leading eigenvectors of the
resulting matrix. The method can also be viewed as a weakly-supervised variant
of the well-known Discriminative Common Vector (DCV) method we introduced
in [31, 33], which is known to give good results, e.g., in high-dimensional face
recognition problems.

Specifically, if we are given sets of similar and dissimilar sample pairs, let XS

and XD be matrices whose columns are the difference vectors of the (respectively)
similar and dissimilar pairs

XS = [xs1,1 − xs1,2, xs2,1 − xs2,2, . . . xsn,1 − xsn,2] ,

XD = [xd1,1 − xd1,2, xd2,1 − xd2,2, . . . xdm,1 − xdm,2] .
(6)

where xsi,1 and xsi,2 respectively denote the first and second samples of the i-
th similar sample pair; xdi,1 and xdi,2 respectively denote the first and second
samples of the i-th dissimilar sample pair. The corresponding scatter matrices are
SS = XSX>

S and SD = XDX>
D. Similarly, if we are given chunklets rather than

pairs, XS is constructed by subtracting the chunklet samples from their associated
means, and XD by subtracting the corresponding chunklet means as in (4).

Let U be a basis for the span of XS , i.e. a matrix whose columns are a minimal
orthonormal basis for the columns of XS . U can be found by truncated SVD of
XS or eigendecomposition of SS in the noisy case, or by QR or Gram-Schmidt
decomposition of XS in the noise-free case. Then P = I−UU> (or equivalently
P = I−XS(X>

SXS)+X>
S where ()+ denotes the pseudo-inverse and I denotes the

identity matrix) zeroes out components along the span of XS and hence implicitly
implements projection onto the orthogonal complement of the span. The samples
x can be projected onto this subspace using Px = x −UU>x before calculating
XD and hence SD and its eigendecomposition. For each similar sample pair or
chunklet, each point of it projects to a fixed point that depends only on the pair or
chunklet (called the common vector in the supervised DCV method). Differences
within similar pairs or chunklets are thus projected away. The process is similar
to the method of metric learning by collapsing classes [7] in the sense that it nat-
urally gives the optimal solution for this in high-dimensional spaces. Conversely,
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it is complementary to RCA in the sense that it gives distances associated with
the null space of the scatter of the similar sample pairs, whereas RCA gives dis-
tances associated with the range space. Moreover, projection onto the null space
is the optimal linear projection in the sense that it preserves the variance along
the orthogonal directions to the projection direction, hence the original distance
measure is best preserved [29].

Given the projection P, we estimate W by finding the leading singular values
of the projected dissimilarity matrix X̃D = PXD, or equivalently the leading
eigenvalues of the projected dissimilarity scatter matrix S̃D = PXDX>

DP. The
number of eigenvectors l can be chosen based on the energy of the eigenvalues –
below we choose l so that the sum of the retained eigenvalues is at least 98% of
the sum of all of them, i.e. the trace of S̃D. Given W, the final distance metric is
A = WW>.

The full method can thus be summarized as follows:

Step 1: Compute XS and find its orthonormal basis matrix U.

Step 2: Project the dissimilar sample pairs to the null space of XS using X̃D =
(I−UU>)XD.

Step 3: Compute S̃D = X̃DX̃>
D, find its leading eigenvectors W, and output the

final distance metric A = WW>.

Note that if the dimension of U is more than about half of the dimension of the
feature space, it may be more efficient to find an explicit basis V for the null space
of XS and project XD directly using this: X̃D = V>XD, returning VW in place
of W.

3.1. Geometric Interpretation
The proposed method corresponds to approximating each pair or chunklet with

an affine subspace spanned by all of the directions in U, then finding projection di-
rections that maximize the geometric distances (scatter) between these subspaces.
In this way, each chunklet is enlarged by creating new points based on all pos-
sible variation cues coming from all similarity constraints. Because the same
basis U is used for all of the subspaces, the subspaces themselves are quite large
and they differ only in their locations within the orthogonal complement of U.
When the method is used to classify a new sample, the resulting output distance
is effectively a reweighted form of the underlying sample-to-affine-subspace dis-
tances. In contrast, RCA method approximates each class with an hyperellipsoid
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(b) Distances to affine hulls(a) Distances to nearest neighbors

Figure 2: Comparisons of distances to the nearest neighbors and affine hulls. Affine hulls are the
lines passing through two samples. The closest distance from a query (shown with blue diamond
symbol) to an affine hull is the norm of displacement from the query to the closest point on the
hull. Observe how the distances change by each method.

based on the variations coming from all similarity constraints as in the proposed
method. But, an affine hull model is a much better approximation than an hyper-
ellipsoid in high-dimensional spaces since the amount of geometric details that
can be resolved usually decrease rapidly as the dimensionality increases and there
is not enough sample to approximate the covariance matrices associated to the
hyperellipsoids.

In image retrieval applications with similarity constraints, the proposed method
builds a manifold (equivalent to an affine subspace) by using similar images to the
query image. Then, the retrieved images are ranked based on the minimum Eu-
clidean distances to this approximated manifold rather than distances to the unique
query sample (see Fig. 2 for comparisons of distances to a nearest neighbor or to
a nearest affine hull). In this context, the proposed method has close ties with
the methods introduced in [34, 35]. As in our case, those methods also approx-
imate samples with different type of manifolds for improving the classification
performance of nearest-neighbor search. Especially, the tangent distance, which
enlarges the training samples based on small spatial transformations and varia-
tions of the thickness of pen strokes, is still considered as state-of-the-arts for
hand-written digit classification. Approximation of samples with different type of
manifolds has been widely used for improving the classification performance of
nearest-neighbor search in the literature, and in this set up, the proposed method
is similar to these methods.
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3.2. Kernelization of the Method
The linear SS-DCV method above breaks down when the orthogonal comple-

ment onto which the data is projected becomes too small, i.e. when the rank of
XS (the dimension of U) approaches the effective dimension of the input data.
In particular, this is likely to happen when the class covariances span the whole
space and there are many more similarity pairs than input dimensions. In such
cases RCA may be more effective. However kernelization can also extend the
working range of SS-DCV in such cases, and more generally it allows problems
with strong nonlinearities to be handled.

Let φ(.) be the implicit feature space embedding and k(xi,xj) = 〈φ(xi), φ(xj)〉
be the corresponding kernel function, where 〈·〉 denotes the feature space inner
product. The implicit matrices of difference vectors of similar and dissimilar pairs
in the mapped feature space become

ΦS = [φ(xs1,1)− φ(xs1,2), . . . φ(xsn,1)− φ(xsn,2)] ,

ΦD = [φ(xd1,1)− φ(xd1,2), . . . φ(xdm,1)− φ(xdm,2)] .
(7)

The orthogonal projection onto the null space of ΦS is then

PΦ = IΦ −ΦS(Φ>
SΦS)+Φ>

S, (8)

where IΦ is the identity matrix in Φ space. Note that KS = Φ>
SΦS is an explicit

matrix with entries k(xsi,1,xsj,1)− k(xsi,1,xsj,2)− k(xsi,2,xsj,1) + k(xsi,2,xsj,2),
and that KD = Φ>

DΦD and KSD = Φ>
SΦD can be defined similarly. Given a new

sample x, the projection of φ(x) onto the null space is

φ̃(x) = PΦ φ(x) = φ(x)−ΦSK+
S Φ>

Sφ(x). (9)

Let Φ̃D denote the projection of the matrix of dissimilar sample pairs onto this
null space. The corresponding scatter matrix becomes

S̃D = Φ̃DΦ̃
>

D = PΦΦDΦ>
DPΦ. (10)

We need to find the leading eigenvectors of this. All eigenvectors v corresponding
to nonzero eigenvalues lie in the span of the dissimilar sample pairs, i.e. v = Φ̃Dα
for some α. The above equation can thus be written as

λ Φ̃D α = Φ̃D Φ̃
>

D Φ̃D α. (11)
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Multiplying by Φ̃
>

D on left and denoting Φ̃
>

D Φ̃D by K̃D, we obtain

λ Φ̃
>

D Φ̃D α = Φ̃
>

D Φ̃D Φ̃
>

D Φ̃D α ⇒ λα = K̃D α. (12)

Moreover,
λα = Φ>

DPΦPΦΦDα = Φ>
DPΦΦDα

= Φ>
D(IΦ −ΦSK+

S Φ>
S)ΦDα

= (KD −KDSK+
S KSD)α

(13)

with the kernel matrices KD, KDS = K>
SD and KS defined as above. There are

at most m eigenvectors corresponding to nonzero eigenvalues, and by orthonor-
mality the corresponding vectors αj must be normalized such that 〈vj,vj〉 =

α>
j K̃D αj = 1. As in the linear case, we choose the eigenvectors corresponding

to the l largest eigenvalues using an energy criterion. Given these bases, a test
sample φ(xtest) can be projected onto each eigenvector using

Ωj = α>
jΦ̃

>

Dφ(xtest) = α>
jΦ

>
DPΦφ(xtest) (14)

= α>
jΦ

>
D(φ(xtest)−ΦSK+

S Φ>
Sφ(xtest))

= α>
j(kD,test −KDSK+

S kS,test), (15)

where kD,test = [k(xtest,xi,1)−k(xtest,xi,2)]i=1,...,m ism-dimensional kernel vec-
tor against the dissimilar sample pairs, and kS,test = [k(xtest,xi,1)−k(xtest,xi,2)]i=1,...,n

is the corresponding n-dimensional kernel vector against the similar sample pairs.
The final embedded vector is Ωtest = [Ω1, . . . ,Ωl]

>.

4. Experiments

We performed experiments on two synthetic datasets and on several challeng-
ing image retrieval, object classification, gender classification and image seg-
mentation problems1. In each case, distance metrics obtained with the proposed
Semi-Supervised Discriminative Common Vectors (SS-DCV) algorithm are com-
pared to the Euclidean Distance (ED) metric and to distance metrics learned using
Information-Theoretic Metric Learning (ITML), RCA, Kernel RCA, DCA and
Kernel DCA. The kernelized methods use Gaussian kernels. To show how ef-
fective similarity and dissimilarity constraints are at discovering hidden groups
within the data, we apply k-means clustering in the embedding spaces returned

1For software see http://www2.ogu.edu.tr/∼mlcv/softwares.html.
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Gaussian Data Clustering Rate Classification Rate
ED 45.26±5.52 76.80±2.51
ITML 92.77±3.99 96.06±2.34
RCA 47.11±4.40 84.67±2.01
DCA 55.76±6.54 83.80±5.35
SS-DCV 88.01±3.73 91.33±4.22
Checkerboard Data
ED 54.36±1.53 48.26±4.50
Kernel RCA 57.76±3.54 49.53±5.70
Kernel DCA 64.54±12.17 87.45±2.39
Kernel SS-DCV 86.10±11.83 90.52±1.40

Table 1: Clustering and classification rates (%) on the synthetic datasets.
1836 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 10, OCTOBER 2008

Fig. 1. Checkerboard database has two classes and each class covers the regions shaded in different colors. We sampled data points from two distributions—(a)
and (b)—where the second distribution (b) is more challenging than the first one (a).

Fig. 2. Classification rates under variation in various parameters. (a) The classification rates as a function of the regularization parameter. (b) The classification
rates as a function of the number of nearest neighbors.

base classifiers, it approximately takes 0.18 ms for the nearest neighbor
search, 2.1 ms for evaluation of the base classifiers, and 34.2 ms for
solving the quadratic programming problem on a 2.40-GHz machine
with 4 GB of RAM. Testing times for evaluation of the base classi-
fiers and quadratic programming problem depend on the number of the
base classifiers in the ensemble. On the other hand, testing time of the
nearest neighbor search depends on the training set size and the dimen-
sionality of the input space. If the dimensionality and/or training set
size are large, we can employ fast nearest neighbor search algorithms
such as KD-trees [21] or locality sensitive hashing [22] to speed up the
search procedure.

2) Experiments on Other Binary Classification Problems: In these
experiments, we compared algorithms on five two-class databases:
Iris,2 Wisconsin Diagnostic Breast Cancer (WDBC), Pima, Banana,
and Lithuanian Classes (LC) databases. Among these, the first three
come from the University of California at Irvine (UCI) machine
learning repository3 and the remaining two databases are created using
PRTOOLS Matlab toolbox.4 The key features of these databases are
summarized in Table II. In all experiments, we used fivefold cross
validation to estimate design parameters and tenfold cross validation
to assess the generalization performance.

2In fact, Iris database has three classes. One class is linearly separable from
other two and the latter two are not separable from each other. We removed the
linearly separable class in our experiments, leaving two classes for this experi-
ment.

3From http://archive.ics.uci.edu/ml/
4From http://www.prtools.org/

TABLE I
CLASSIFICATION RATES (IN PERCENT) FOR THE CHECKERBOARD DATA

TABLE II
KEY FEATURES OF SELECTED DATABASES

The results are given in Table III. The number of the base classi-
fiers used in each ensemble is given in the square brackets for each
database. The results suggest that when the classes are close to being
linearly separable as in Iris and WDBC, most of the classifier com-
bination strategies yield similar results, with DCS-LA having a slight
lead. As the decision boundaries become more complex (Banana and

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 13, 2008 at 04:08 from IEEE Xplore.  Restrictions apply.

Figure 3: Rotated checkerboard data. The two classes are represented by different colors.

by the metric learning algorithms and quantify the effectiveness of the embed-
ding by the percentage of same-class samples that are clustered together. We also
report the classification accuracies of the tested embeddings using the nearest-
class-mean classifier. For RCA, we include a regularizer δI to prevent singular
covariance matrices, where δ is a small positive constant.
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4.1. Synthetic Datasets
The first synthetic dataset contains 1000-dimensional feature vectors belong-

ing to three classes. The first dimension is the only distinctive one, with the classes
being normally distributed as respectivelyN(−8, 1),N(0, 1) andN(8, 1). The re-
maining dimensions are irrelevant features distributed as N(0, 4). We only tested
linear methods as the data is linearly separable. 50 samples per class are used to
define the equivalence constraints, with 100 samples per class for testing. In all,
we included only 90 similarity and 60 dissimilarity constraints. The averages and
standard deviations of the resulting clustering and classification accuracies over
10 independent runs are given in Table 1. Clearly, all of the distance learning
algorithms tested give better results than the Euclidean distance. The best clus-
tering and classification accuracies were obtained with ITML, followed by the
proposed method, and both methods significantly outperformed all of the others
tested. Moreover, note that the ITML results are anomalous in the sense that the
dimensionality was too high to apply ITML directly, so we used PCA to reduce
the dimensionality to 20 before applying it, whereas this was not necessary for the
other methods tested.

For the second synthetic test we use a 2-D dataset in which the two classes
cover respectively the red and the black squares of a rotated checkerboard as illus-
trated in Fig. 3. The points of each class fall into several distinct subclusters that
are far from one another and intermixed with the subclusters of the other class,
so it is hard to group them together. Linear separation is not possible so we used
kernelized methods. We randomly sampled 300 points from the checkerboard
for training, creating 150 similarity and 100 dissimilarity constraints using these,
with 1000 additional points for testing. The clustering and classification accura-
cies over 10 random trials are shown in Table 1. The proposed method leads the
table, failing to find the correct clusters only once in the 10 trials, whereas all of
the other methods tested fail significantly more often, with ED and Kernel RCA
giving results that are close to random.

4.2. Image Retrieval
For this experiment we use the dataset for image retrieval using side infor-

mation defined by [36]. This contains 100 randomly selected images from the
COREL CDs for each of 20 semantic classes (antelope, butterfly, cat, dog, moun-
tain, roses, etc.). The images are represented by global 36-D feature vectors: 9
moments of HSV color histograms, 18 features from edge direction histograms,
and 9 wavelet based texture features. We randomly selected n = 50, 70, 90, 110
similarity constraints and m = 45, 60, 75, 90 dissimilarity constraints from each
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Constraints n=50, m=45 n=70, m=60 n=90, m=75 n=110, m=90
TOP 10 20 10 20 10 20 10 20
ED 45.7±0.4 38.9±0.4 45.8±0.4 38.9±0.4 45.8±0.4 38.8±0.4 45.5±0.4 38.6±0.4
ITML 28.8±2.8 24.3±2.7 27.8±1.9 23.6±2.1 27.7±3.2 23.3±3.0 18.8±5.0 16.0±4.0
RCA 48.4±0.7 40.9±0.6 48.3±0.6 40.8±0.5 48.2±0.5 40.7±0.4 48.6±0.7 41.0±0.7
Ker. RCA 35.4±0.7 28.4±0.6 33.0±0.9 26.4±0.9 31.8±0.8 25.6±0.5 33.0±0.7 27.1±0.4
Ker. DCA 37.7±0.7 32.2±0.7 38.0±0.6 32.3±0.5 38.0±0.5 32.3±0.6 38.0±0.4 32.4±0.5
Ker. SS-DCV 52.1±1.2 43.4±1.2 58.2±1.7 50.1±1.3 61.5±1.8 55.1±1.1 65.6±1.7 59.0±1.6

Table 2: Average precision (%) of the top ranked 10 or 20 images for image retrieval of twenty
categories of 100 images chosen from the Corel dataset.

category. After learning the distance metric, each image in the whole dataset is
tested as a query, in each case evaluating it using the learned embedding against
the remaining images that were not used for creating constraints. The retrieval is
evaluated based on the top-ranked 10 and 20 images. The experiment is repeated
10 times with different random samplings of the constraints. Table 2 reports the
resulting average precisions (AP%) for the different numbers of constraints. The
proposed method is significantly better than all of the others tested in all of the
cases tested. For example, with n = 110, m = 90 constraints per category, it
is about 17% better than the second best method RCA and 20% better than the
Euclidean distance. ITML produces the worst results.

4.3. Visual Object Classification
For this experiment we sampled 600 images (150 per class) from the Caltech-4

dataset, which includes the four object categories airplanes, cars, faces and motor-
cycles as shown in Fig. 4. The images are too diverse to allow simple geometric
alignment of their objects so we used a “bag of features” representation, comput-
ing SIFT descriptors over patches extracted at DoG interest points and generating
a 500 word visual codebook by clustering them using k-means. Each image is
thus represented by its 500-D visual word histogram. For each class we used 70
of the images to create the equivalence constraints, with the remaining 80 held
back for testing. We randomly selected n = 30, 50, 70, 90, 110 similarity and
m = 15, 30, 45, 60, 75 dissimilarity constraints for each class. As the χ2 distance
CSD(u,v) = (1/2)

∑d
i=1 [(ui − vi)2/(ui + vi)] is often a better metric for his-

togram comparison than the standard Euclidean Distance (ED), we report results
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Figure 4: Some images from the Caltech-4 dataset.
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Figure 5: Clustering and classification accuracies on Caltech-4 (best viewed in color).

for both. For the kernelized CSD methods, we used the generalized-Gaussian
CSD kernel k(u,v) = exp(−CSD(u,v)/(2σ2)). Fig. 5 plots the resulting clus-
tering and classification accuracies. As expected, CSD gives uniformly better re-
sults than ED. Overall, RCA is the best performer for clustering but a poor one for
classification. The proposed method yields the second best results for clustering
and the best ones for classification. Kernel DCA initially produces poor results
as the number of dissimilarity constraints is low, but it becomes significantly bet-
ter as this number is increased. Among the distance learning methods, only the
proposed methods and Kernel DCA improve significantly as the number of con-
straints is increased. Kernel RCA produces very poor results as expected: RCA
requires the inversion of a feature space scatter matrix and in high-dimensional
spaces such as those given by Gaussian kernels, these matrices become severely
rank deficient causing a large loss of accuracy. In contrast, the proposed method
can make good use of the freedom provided by such high-dimensional feature
spaces because it is based on the null space of the scatter matrix, not its range
space as in RCA.
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4.4. Experiments on Gender Database
Here we demonstrate how the proposed method can be used to organize im-

age galleries in accordance to the personal preferences. For such applications,
we determine a characteristic for distinction and group images based on this se-
lection. In our case we group images by gender and use the gender recognition
database used in [37]. This database consist of 1892 images (946 males and 946
females) coming from the following databases: AR, BANCA, Caltech Frontal
face, Essex Collection of Facial Images, FERET, FRGC version 2, Georgia Tech
and XM2VTS. Only the first frontal image of each individual was taken, however
because all of the databases have more male subjects than females, the same num-
ber of images is taken for both male and female subjects. All images are cropped
based on the eye coordinates and resized to 32× 40 yielding a 1280-dimensional
input space. Then, images are converted to gray-scale followed by histogram
equalization. Some samples are shown in Fig. 6.

Figure 6: Some male and female samples from Gender database.

We used 50% of the images as training data and the remaining for testing.
The dimensionality d = 1280 of the input space is too high, thus we reduced the
dimensionality through PCA to 20 before application of ITML as before. We ran-
domly selected n = 100, 2000, 300, 400, 500 similarity andm = 50, 100, 150, 200,-
250 dissimilarity constraints. the experiment is repeated 5 times with different
random samplings of the constraints. We used the Gaussian kernel function for all
tested kernel methods. The resulting clustering and classification accuracies are
given at Table 3 and Table 4, respectively. Our proposed method Kernel SS-DCV
achieves the best clustering and classification rates for all cases. It is followed
by Kernel DCA. For both methods, the accuracies increase as the number of con-
straints is increased as expected. The results saturate when n = 400,m = 200
constraints are used. Similar to the visual object classification problem, Kernel
RCA produces very poor results. It should be noted that ITML yields very sim-
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Constraints m=100, n=50 m=200, n=100 m=3000, n=150 m=400, n=200 m=500, n=250
ED 53.81±2.4 55.13±1.1 55.38±2.5 55.31±1.5 54.94±1.8
ITML 66.34±3.0 69.60±1.5 70.86±2.6 68.10±2.6 69.28±2.2
RCA 68.11±2.0 67.60±4.3 66.38±2.9 61.08±4.2 60.47±2.4
DCA 65.10±2.9 71.23±1.1 74.79±1.3 76.76±2.4 76.58±1.6
SS-DCV 64.84±2.4 65.40±3.2 63.80±2.8 61.29±1.9 58.97±2.8
Kernel RCA 64.10±2.7 65.40±2.5 63.24±2.9 60.07±2.7 60.03±2.9
Kernel DCA 65.86±1.2 71.53±1.5 76.12±2.8 78.09±1.5 80.44±1.8
Kernel SS-DCV 71.92±3.0 76.96±1.1 81.20±0.9 83.87±1.2 83.55±0.8

Table 3: Clustering Accuracies for Different Number of Constraints on Gender Database.

Constraints m=100, n=50 m=200, n=100 m=3000, n=150 m=400, n=200 m=500, n=250
ED 77.52±0.9 77.37±0.5 78.07±0.9 78.11±1.1 77.44±1.1
ITML 78.55±1.1 79.09±0.8 78.98±2.5 78.54±1.0 78.33±2.7
RCA 65.01±3.1 57.25±1.6 58.81±3.1 55.43±2.5 55.80±0.9
DCA 77.97±2.1 78.66±1.5 78.58±1.4 78.22±1.6 76.93±2.0
SS-DCV 71.63±2.3 66.15±1.0 64.51±2.2 62.58±2.2 61.56±2.1
Kernel RCA 62.31±4.5 54.42±2.1 52.55±2.3 51.63±1.6 51.86±1.8
Kernel DCA 77.70±1.8 78.31±1.2 80.02±2.1 80.11±1.7 80.85±0.9
Kernel SS-DCV 78.40±1.2 81.76±1.1 82.39±1.3 84.13±1.1 84.14±1.2

Table 4: Classification Accuracies for Different Number of Constraints on Gender Database.

ilar results for all cases even though the number of constraints is gradually in-
creased. This shows that important discriminatory information is thrown away
during dimensionality reduction step. The accuracy for the proposed linear SS-
DCV method decreases as the number of constraints is increased. This is not
surprising since as the number of similarity constraints are increased, the null
space becomes smaller and smaller and it is hard to find discriminatory directions
in such a small subspace. This does not apply to Kernel SS-DCV since the input
space is mapped to an infinite-dimensional space.
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Figure 7: Image segmentation results (best viewed in color). First row: the pixels used for the
equivalence constraints. Second row: the segmentation results without the constraints. Bottom
row: the segmentation results incorporating the constraints. The results have not undergone mor-
phological cleaning.

4.5. Image Segmentation
Finally, we tested the proposed method on an image segmentation problem.

We selected images from the Berkeley Segmentation dataset2. For each pixel in
each image, we extracted the 20× 20 image patch centered at the pixel and com-
puted its robust hue descriptor [38]. The resulting 36-D feature vectors are his-
tograms over the hue values observed in the patch, with each value being weighted
by its saturation. As a baseline we used heat kernel based Normalized Cut (NCut)
image segmentation [39] with two clusters, one for the object of interest and one
for the background. The second row of Fig. 7 shows these unsupervised segmenta-
tion results. Similarity and dissimilarity constraints were defined by sampling the
pixels shown respectively in magenta and cyan in the first row of Fig. 7, and the
proposed method was used to learn an embedding function from these. K-means
clustering in the embedded space was then used to segment the image, giving the
results shown in the third row of the figure. As can be seen, the addition of simple
user defined (dis)similarity constraints significantly improves the segmentations.

2From http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench
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For example, in the flower image there are essentially three well-separated color
components: the green background, the red petals and the yellow flower centres.
There are thus three reasonable segmentations, each separating one of the three
components from the other two. It is not clear a priori which of these is desired
by the user, but a few similarity constraints suffice to specify this.

5. Summary and Conclusions

This paper describes a method for learning distance metrics in high-dimensional
feature spaces using pairwise similarity (equivalence) and dissimilarity (non -
equivalence) constraints. The method finds a linear mapping that projects the
input to a lower dimensional space in which similar point pairs coincide and the
scatter of the dissimilar point pairs is as large as possible. It does this by first
projecting the data onto the orthogonal complement of the directions spanned by
the similar pairs, then optimizing a conventional scatter criterion in the projected
space. The method works in both explicit and kernel-induced feature spaces and
it can learn rectangular projection matrices that yield low-rank distance metrics.
Experimental results on synthetic datasets and on several real computer vision
problems show that the proposed method achieves significantly better clustering
and classification accuracies than existing distance metric learning methods.
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