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In this thesis, feature extraction methods for pattern recognition tasks in high-dimensional 

spaces are investigated. High-dimensional spaces are quite different from the three-

dimensional (3-D) space in terms of geometrical and statistical properties. Although high-

dimensional sample spaces contain more information regarding capability to discriminate 

different class samples with more accuracy, pattern classification techniques that carry out 

computations at full dimensionality may not deliver the advantages of high-dimensional 

sample spaces if there are insufficient training sample patterns. In such cases, reliable density 

estimation is extremely difficult. Therefore, the dimensionality of the sample space must be 

reduced via feature extraction methods before the application of the classifier to data samples 

in high-dimensional spaces. However, in order to retain discriminatory information which the 

high-dimensional sample spaces provide, good dimension reduction methods are needed. 

In this study, a linear feature extraction method which exploits the advantages of high-

dimensional spaces was proposed. Then, this linear method was generalized to the nonlinear 

case by utilizing kernel functions. There is no loss of discriminatory information content in 

the sense that the proposed methods achieve 100% recognition rate with respect to training 

data under certain conditions. Experimental results using different databases also show that 



the proposed methods are superior to other feature extraction methods in terms of 

generalization and real-time performances. 
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CHAPTER I 

 

INTRODUCTION 

 

A pattern is the description of an object, and this pattern can be anything, perceivable with 

the five senses. An image of a face, a fingerprint, a spoken word, a hand written character, 

and a biological waveform are, depending on the application, some pattern examples. 

Patterns are represented by a set of features (attributes). Each feature numerically expresses a 

property of the pattern, and the total number of features determines the size of the original 

feature space. This space is also called the sample space. Pattern samples with similar 

properties form the pattern classes, and pattern recognition can be defined as the 

classification of patterns into a number of categories or classes via the extraction of 

significant features from a background of irrelevant detail [106].  

Human beings can do most pattern recognition tasks well. We receive data through our 

senses and most of the time we can easily identify the source of the data. However, 

technology has introduced many new pattern recognition tasks which must be performed 

more cheaply and faster than human beings can. Therefore, much research is being done to 

design and build machines that recognize patterns. Indeed, machines that recognize patterns 

are used in many areas including fingerprint identification, speech recognition, face 

recognition, optical character recognition, DNA sequence identification, and many more. 

Although human beings can solve many pattern recognition problems with little effort, 

pattern recognition of machines is an extremely difficult task. Rapidly growing computing 

power has facilitated the use of complex and diverse methods for data analysis and 
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recognition. At the same time, because of the availability of large databases and strict 

performance requirements, (speed, accuracy, and cost), demands on automatic pattern 

recognition systems have been rising constantly [57]. 

A pattern recognition system consists of a series of stages, of which the feature extraction 

and classification are the most crucial for its overall performance. The feature extraction 

reduces the dimensionality of the sample space by keeping the most discriminatory 

information. The performance of the feature extraction stage significantly affects the design 

and performance of classification stage. If the best set of features is selected, the job of 

subsequent classifiers will be trivial. On the other hand, if the features with little 

discriminatory power are chosen, a more sophisticated classification model may be needed. 

Feature extraction is more problem and domain dependent. For example, a good feature 

extractor for pattern recognition tasks with high-dimensional sample spaces might not work 

well for the pattern recognition tasks where the dimensionality of the sample space is small. 

In this thesis, the feature extraction techniques for high-dimensional spaces are investigated. 

High-dimensional spaces are quite different from the three-dimensional (3-D) space in terms 

of geometrical and statistical properties. Although high-dimensional sample spaces contain 

more information regarding capability to discriminate different class samples with more 

accuracy, pattern classification techniques that carry out computations at full dimensionality 

may not deliver the advantages of high-dimensional sample spaces if there are insufficient 

training sample patterns. In such cases, reliable density estimation is extremely difficult. 

Therefore, the dimensionality of the sample space must be reduced via feature extraction 

methods before the application of the classifier to data samples in high-dimensional spaces. 
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However, in order to retain discriminatory information which the high-dimensional sample 

spaces provide, good dimension reduction methods are needed. 

 In this study, a linear feature extraction method which exploits the advantages of high-

dimensional spaces was proposed. Then, this linear method was generalized to the nonlinear 

case by utilizing kernel functions. In addition, we proposed a variation of a linear subspace 

classifier which is suitable for pattern recognition tasks in high-dimensional spaces. This 

method was also generalized to the nonlinear case by employing kernel functions. The 

usefulness of the proposed methods was demonstrated with experiments using various 

databases. 

 

1.1 Outline 

This thesis is divided into four major parts. An overview of the stages of a typical pattern 

recognition system is given in Chapter 2. Then, some basic concepts from pattern recognition 

area are explained. 

Chapter 3 introduces the characteristic properties of high-dimensional sample spaces 

first. Then linear feature extraction methods are examined extensively, and a novel linear 

feature extraction method, called the Discriminative Common Vector (DCV) Method, is 

proposed. Finally, we compare the proposed method to other linear feature extraction 

methods using a wide range of different databases and formulate our conclusions at the end 

of the chapter. 

Chapter 4 presents a general introduction to nonlinear feature extraction methods 

employing kernel functions. We generalize the linear DCV Method to the nonlinear case by 

utilizing kernel functions in this chapter. Then, a large scale comparison of feature extraction 
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methods is carried out and its results are examined. Finally, we draw our conclusions based 

on the experimental results at the end of the chapter. 

Chapter 5 describes the linear and nonlinear subspace classifiers. We introduce a 

variation of a subspace classifier here and then generalize it to the nonlinear case by using 

kernel functions. Finally, we give experimental results and draw our conclusions at the end of 

the chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5

CHAPTER II 

 

PATTERN RECOGNITION SYSTEM 

 

Pattern recognition can be defined as the classification of patterns into a number of categories 

or classes via the extraction of significant features from a background of irrelevant detail. A 

typical pattern recognition system has four stages as shown in Figure 2.1. There is an 

unknown pattern sample presented as a set of features at the input of a pattern recognition 

system, and there is a set of predefined classes at the output. The task of the system is to 

assign the unknown pattern sample to one of the classes.  

In the following sections each stage of the pattern recognition system is described. Then, 

we explain some basic concepts of pattern recognition used throughout this thesis. 

 

 

Figure 2.1: A typical pattern recognition system. 

 

2.1 Pre-processing 

This stage typically includes operations that improve the representation of the patterns. 

Therefore, it may include data registration, noise removal, segmentation, and data 

normalization, depending on the nature of pattern recognition task. In face recognition 

problems, the face images are registered so as to make sure that the eyes appear in the same 

coordinates of the images. Pattern samples usually contain some noise, which may need to be 
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reduced before classification. The term “noise” is usually defined in a wide sense in pattern 

recognition area. Any property of the pattern that hinders a pattern recognition system’s task 

and is not due to the true underlying model is regarded as noise. In speech recognition 

problems, filters are usually used to remove noise and enhance higher frequencies. Some 

recognition tasks may require segmentation of individual patterns. For instance, we may need 

to segment faces in an image to create meaningful patterns for the feature extraction step. 

Normalization is to scale the features of data so as to fall within a small specified range. 

Some neural network models require normalization of data samples to be in the range of -1 to 

1 or 0 to 1. All these operations contribute to defining a compact representation of patterns 

[32]. 

 

2.2 Feature Extraction 

The selection of the best set of features for dimension reduction is one of the most important 

issues of pattern recognition. The aim of feature extraction is to reduce the number of 

features of patterns and at the same time retain as much as possible of their discriminatory 

information. Therefore, a good feature extractor chooses features which are similar for 

patterns in the same class and very different for patterns in different classes. Since the 

dimensionality of the sample space is reduced after the feature extraction step, extraction will 

yield savings in memory and time consumption. The feature extraction step may also 

alleviate the worst effects of the so-called curse of dimensionality, which will be explained in 

detail in the following sections. 
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2.3 Classification 

The task of the classification is to assign the feature vector provided by the feature extractor 

to a class. The output of the classifier is typically a discrete selection of one of the pre-

defined classes. All the preceding components of a pattern recognition system are designed 

and tuned for improving the performance of the classifier. The degree of difficulty of the 

classification depends on the similarity relations between the patterns of different classes. 

Therefore, its success is significantly affected by the feature extraction stage. 

 

2.4 Post-processing 

The post-processing stage aims to improve overall classification accuracy. It tries to 

minimize the classification error rate based on the classification outputs. This stage usually 

utilizes a priori information about the problem to accomplish its task.   

 

2.5 Some Concepts of Pattern Recognition 

Learning and generalization are two important concepts of pattern recognition. In the 

following sections they are explained in detail. 

 

2.5.1 Learning Types 

A pattern recognition system produces a mathematical model which maps the patterns to the 

corresponding classes. Typically, it is not possible to determine a reliable mapping without 

the help of data samples. Finding this model is called learning or training, and the sample 

patterns used during this process called the training set samples. Any method that 

incorporates information from the training set samples in pattern classification employs 
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learning. There are three basic types of learning methods depending upon the nature of the 

pattern recognition task.  

1. Supervised Learning: In supervised learning, class labels or costs of training set samples 

are known before the training phase begins. The training phase computes the model which 

minimizes the total cost for the training set patterns. This kind of learning involves human 

labor. It is typically the most common learning method, and it has many applications in 

pattern recognition area.  

2. Unsupervised Learning: In unsupervised learning, the training set samples are not labeled, 

and the main objective is to unravel the underlying similarities and group similar patterns 

together. Unsupervised learning does not require human labor for labeling, and it has many 

applications in engineering, such as image segmentation and multi-spectral remote sensing. 

3. Reinforcement Learning: In reinforcement learning, a feedback is provided in order to 

compute the model that maps the patterns to the classes. Typically, the teaching feedback is 

the information of the fact that the tentative class is right or wrong instead of the patterns’ 

true label information.  

 

2.5.2 Generalization 

To compute the model that maps the pattern samples to their corresponding classifiers, we 

train the pattern recognition system by using available training set samples. However, a 

pattern recognition system, which is trained to maximize the performance in recognizing 

training set samples, may not recognize new test samples well. This is the issue of 

generalization. Therefore, generalization ability of a pattern recognition system refers to its 
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performance in recognizing new samples not used in the learning stage. There are basically 

two causes of poor generalization in pattern recognition systems: 

1. Pattern recognition system is intensively optimized (overtrained) on the training set, and it 

ends up memorizing the training set samples. This is also referred to as an overfitting 

problem. 

2. The number of features is too large compared to the number of training samples. This is 

also called the curse of dimensionality.  

 

Overfitting 

A successfully designed pattern recognition system produces a reliable input-output mapping 

model and recognizes well the new samples that are slightly different from the training set 

samples. However, an overtrained pattern recognition system will produce a mapping model 

which describes the training data well but does not generalize to unseen samples. Figure 2.2 

adopted from [10] illustrates two different mapping models which are produced by successful 

and overtrained pattern systems. Although the overtrained system recognizes all the training 

set samples correctly, it is very unlikely perform well on new patterns. 

Overtrained pattern recognition systems usually take into consideration the features 

which are present in the training data but not part of the correct underlying input-output 

mapping model. These features may stem from noise in the system. Thus, the mapping model 

becomes more complex and loses the ability to generalize between similar input-output 

patterns.    
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Figure 2.2: Succesfully designed and overtrained pattern recognition systems. 

 

Curse of Dimensionality and the Relation between the Dimensionality of the Sample Space 
and the Training Set Size 

The curse of dimensionality was first introduced by Richard Bellman in the adaptive control 

processes area [8]. It states that for a fixed training set size, increasing the number of features 

first enhances the performance of the recognition system, but beyond a certain point, adding 

new features degrades the performance of the system. This occurs because increasing the 

dimensionality of the sample space leads to sparseness which in turn leads to poor 

representation of the vector densities and input-output model. 

In order to understand this phenomenon, consider the following example from [10]. Let 

ix  ( Ni ,...,2,1= ) represent a training set vector in a d-dimensional space, where there are a 

total of N samples in the training set. Suppose the function )( ixf  is the nonlinear function 

model that assigns the patterns to the desired classes. Assume the function )( ixf  is 

arbitrarily complex and completely unknown. We first divide each of the training samples 

into a large number of boxes or cells as shown in the Figure 2.3. The desired class )( ixf  of a 

sample is specified by the cell in which it lies. Each of the training samples corresponds to a 
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point in the cells. We classify a new test pattern from an unknown class by using the cell in 

which it falls. If we increase the number of cells along each axis, this process increases the 

precision. However, assuming that each input sample is divided into M divisions, the total 

number of cells will be dM , which grows exponentially with the dimensionality d of the 

sample space. Since each cell must contain at least one data sample, the number of training 

samples to specify the mapping model grows exponentially. If we have a limited number of 

training samples, then increasing the dimensionality of the sample space will lead to the point 

where the data samples are very sparse, which in turn provides a very poor representation of 

the model assigning the patterns to desired classes. 

  

 

Figure 2.3: A mapping from a d-dimensional space to an output variable y can be accomplished by 
dividing the input space into a number of cells, and assigning each cell to a class. However, the 
number of cells grows exponentially with the dimensionality d. 
 

Therefore, we should design pattern recognition systems by using a small number of 

features that have the most discriminatory information. It has been proved that the required 

number of training set samples is linearly related to dimensionality for a recognition system 

using a linear classifier; it is linearly related to the square of the dimensionality for a 
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quadratic classifier. In a nonlinear case, as given in the example, the training set size must 

increase exponentially for a good mapping model [59]. 
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CHAPTER III 

 

LINEAR FEATURE EXTRACTION METHODS IN HIGH-DIMENSIONAL SPACES 

 

The objective of this study is to investigate pattern recognition methods for high-dimensional 

sample spaces. It has been demonstrated that high-dimensional space is significantly different 

from the three-dimensional (3-D) space, and that our experience in 3-D space tends to 

mislead our intuition of geometrical and statistical properties in high-dimensional sample 

spaces [59]. Therefore, we first review some characteristic properties of high-dimensional 

spaces which motivate the use of feature extraction techniques in pattern recognition tasks 

with high-dimensional sample spaces. Then we introduce our basic notation and examine 

linear feature extraction methods extensively. In addition, a novel feature extraction method 

that exploits the advantages of high-dimensional sample spaces is proposed in this chapter. 

We compare the proposed method to other discussed linear feature extraction methods in 

terms of recognition accuracy, numerical stability, and real-time performance using various 

databases. Finally, we formulate our conclusions based on the experimental results at the end 

of the chapter. 

 

3.1 Characteristic Properties of High-Dimensional Spaces 

For a fixed number of training samples, increasing the dimensionality of the sample space 

spreads the data over a greater volume. This process reduces overlap between the classes and 

enhances the potential for discrimination. Therefore, it is reasonable to expect that high-

dimensional sample spaces contain more information of capability to detect more classes 
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with more accuracy. However, from the curse of dimensionality, we know that there is a 

penalty in classification accuracy as the number of features increases beyond some point. 

Therefore, techniques of carrying out computations at full dimensionality may not deliver the 

advantages of high-dimensional sample spaces if there are insufficient training samples.  

Experiments have shown that high-dimensional sample spaces are mostly empty since 

data typically concentrate in an outside shell of the sample space far from the origin as the 

dimensionality increases [59]. This implies that the data samples are usually in a lower-

dimensional structure. As a consequence, high-dimensional data can be projected to a lower-

dimensional subspace without losing significant information in terms of separability among 

the classes by employing some feature extraction techniques. It has been also proved that as 

the dimensionality of the sample space goes to infinity, lower-dimensional linear projections 

approach a normality model with a probability approaching one. Here normality implies 

either a normal or a mixture of normal distributions.  

It turns out that the normally distributed high-dimensional data concentrate in the tails 

and uniformly distributed high-dimensional data concentrate in the corners. This makes 

density estimation task for high-dimensional sample spaces a difficult task. In this case, local 

neighborhoods become empty, which in turn produces the effect of losing detailed density 

estimation. 

Another interesting observation was related to the first and the second order statistics of 

data samples. It has been shown that for low-dimensional sample spaces, class means 

representing first order statistics play a more important role in discriminating between classes 

than the class covariances representing second order statistics. However, as dimensionality 

increases, class covariance differences become more important. 
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In summary, the dimensionality of the sample space must be reduced before the 

application of the classifier to data samples in high-dimensional sample spaces. However, in 

order to keep the discriminatory information, which the high-dimensional sample spaces 

provide, good dimension reduction techniques are needed. In this study, the dimension 

reduction techniques for high-dimensional sample spaces are investigated.  

 

3.2 Dimensionality Reduction 

Dimensionality reduction usually improves the accuracy of recognition of a pattern 

recognition system beside saving memory and time consumptions, as described in the 

previous chapter. This seems somewhat paradoxical since dimensionality reduction usually 

reduces the information content of the input data. However, a good dimensionality reduction 

technique keeps the features with the high discriminative information and discards the 

features with redundant information. Thus, the worst effects of the curse of dimensionality 

are reduced after the dimensionality reduction process, and often improved performance is 

achieved over the application of the selected classifier in the original sample space. But given 

a set of features, how can the best set of features for classification be selected? 

Given a set of features, selection of the best set of features can be achieved in two 

different ways. The first approach is to identify the features that contribute most to class 

separability. Therefore, our task is the selection of previously decided d~  features out of our 

initial d features. This is called feature selection. The second approach is to compute a 

transformation which will map the original input space to a lower-dimensional space by 

keeping the most of the discriminative information. This transformation can be linear or 

nonlinear combinations of the samples in the training set. This approach is usually called the 
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feature extraction. Both approaches require a criterion function, J, which is used to judge 

whether one subset of features is better than another. 

 

3.2.1 Feature Selection 

In this approach we select the best set of d~  features for classification out of original d 

features. We must first define a criterion function, J, to accomplish this task. The selected 

criterion is evaluated for all possible combinations of d~  features systematically selected 

from d features. Then, we select the set of features for which the criterion is maximum as our 

final features. However, this task is not very straightforward because there are 
!~)!~(

!
ddd

d
−

 

possible combinations for evaluation. As a consequence, this procedure may not be feasible 

even for moderate values of d and d~ . Therefore, we will not consider the feature selection 

methods in this study since we are only interested in the data sets with high-dimensional 

spaces. Some detailed information about the feature selection methods can be found in [10] 

and [120].  

 

3.2.2 Feature Extraction 

In this approach we seek a transformation which will map the original input space to a lower-

dimensional space by keeping the features offering high classification power. The 

optimization is evaluated over all possible transformations of the data samples. Let W~  denote 

the sought transformation for which 
ϖ∈

=
W

xWJWJ
~

))(~(max)( , where ϖ  is the family of 

allowable transformations and x refers to the training set samples. The new samples in the 
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transformed space are computed by )(xWy = . The criterion function is typically a measure 

of distance or similarity between training set samples. 

 

3.3 Linear Feature Extraction Methods 

Feature extraction has been one of the most important issues of pattern recognition. Most of 

the feature extraction literature has centered on finding linear transformations, which map the 

original high-dimensional sample space into a lower-dimensional space that hopefully 

contains all discriminatory information. As explained previously, the principal motivation 

behind dimensionality reduction by feature extraction is that it may reduce the worst effects 

of the curse of dimensionality [10]. Also linear feature extractions techniques are often used 

as pre-processors before more complex nonlinear classifiers. In the following sections we 

discuss these linear methods.  

 

3.4 Definitions 

Let the training set be composed of C classes, where the i-th class denoted by )(iω  contains 

iN  samples, and let i
mx  be a d-dimensional column vector, which denotes the m-th sample 

from the i-th class. There will be a total of ∑
=

=
C

i
iNM

1
 samples in the training set. The 

within-class scatter matrix WS , the between-class scatter matrix BS , and the total scatter 

matrix TS  are defined as 

T
WW

T
i

i
mi

C

i

N

m

i
mW AAxxS

i

=−−∑ ∑=
= =

))((
1 1

µµ ,                                 (3.1) 

T
BB

T
i

C

i
iiB AANS =−∑ −=

=
)()(

1
µµµµ ,                                      (3.2) 
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and 

BW
T

TT
Ti

m

C

i

N

m

i
mT SSAAxxS

i

+==−−∑ ∑=
= =

))((
1 1

µµ ,                          (3.3) 

where ∑ ∑=
= =

C

i

iN

m

i
mx

M 1 1

1µ  is the mean of all samples, and ∑=
=

iN

m

i
m

i
i x

N 1

1µ  is the mean of samples 

in )(iω . The matrices dxM
WA ℜ∈ , dxC

BA ℜ∈ , and dxM
TA ℜ∈  are defined as 

]......[ 2
2
11

1
1

1
1 1 C

C
NNW C

xxxxA µµµµ −−−−= ,               (3.4) 

])(...)([ 11 µµµµ −−= CCB NNA ,                             (3.5) 

and 

]......[ 2
1

11
1 1

µµµµ −−−−= C
NNT C

xxxxA .                   (3.6) 

 

3.5 Principal Component Analysis (PCA) 

One of the most popular feature extraction methods is the PCA Method. The main idea 

behind the PCA Method is to find a lower-dimensional space in which the data samples are 

optimally represented [10], [32], [113]. Therefore, the objective is to find the best set of 

projection directions in the sample space that will maximize the total scatter across all 

samples such that the criterion ||max)( WSWWJ T
T

optPCA =  is maximized under the 

constraint that the columns of the projection matrix W be orthonormal (i.e., ijji ww δ= , 

where ijδ  is the Kronecker’s delta). Geometrically, PCA can be seen as the rotation of the 

axes of the original coordinate system to a new set of orthogonal axes which are ordered 

according to the amount of variation of the original data they account for. The criterion PCAJ  

is maximized when the most significant eigenvectors (the eigenvectors corresponding to the 
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largest eigenvalues of TS ) are chosen as the projection vectors for feature extraction. The 

eigenvectors of TS  are called as principal components. The total scatter matrix TS  is a 

symmetric positive semi-definite matrix. Therefore, all eigenvectors of TS  are orthogonal 

and, all eigenvalues of TS  are greater than or equal to zero. Let us assume the eigenvalues 

are ordered such that rtλλλ ≥≥≥ ...21 , where rt ( drt ≤ ) is the rank of TS . Then we select n 

( rtn ≤ ) eigenvectors corresponding to the largest eigenvalues and form the projection matrix 

]...[ 21 nwwwW = . Any sample can be approximated by a linear combination of the 

significant eigenvectors. The sum ∑
+=

rt

nj
j

1
λ of the eigenvalues corresponding to the 

eigenvectors not used in reconstruction gives the mean square error. Thus, the number of 

eigenvectors n can be chosen such that the ratio of the sum of the eigenvalues corresponding 

to the retained eigenvectors to the sum of all eigenvalues exceeds a percentage η , i.e., 

ηλλ ≥∑∑
==

rt

j
j

n

j
j

11
/ . Typical values of this percentage lie between 19.0 <≤η . 

Since Principal Component Analysis is a scale dependent method, a standardization 

procedure is usually carried out before applying PCA. Data are usually transformed to have 

zero mean and unit variance in each axis during the standardization procedure. This gives 

equal importance to each axis such that the PCA Method is not affected by the different units 

used to measure the axes.  

The algorithm for the PCA Method can be summarized as follows: 

Step 1: Find the mean µ  of the training set samples and center the samples by subtracting 

mean from each sample such that 

.,...,1,,...,1,~
i

i
m

i
m NmCixx ==−= µ                             (3.7) 
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Optionally, samples can also be standardized to have unit variance. 

Step 2: Form the total scatter matrix Ti
m

C

i

iN

m

i
mT xxS ~~

1 1
∑ ∑=
= =

and compute its eigenvectors and 

corresponding eigenvalues. Select the most significant n eigenvectors such that the sum of 

corresponding eigenvalues is 95% of the sum of all eigenvalues. Then form the matrix 

]...[ 21 nwwwW = , where columns are the computed eigenvectors. 

Step 3: Find the new feature vectors by  

.,...,1,,...,1,~
i

i
m

Ti
m NmCixWy ===                           (3.8) 

In the transformed space each new sample vector will have n entries. Thus, the original 

dimensionality d of the sample space is reduced to n by this process. 

Sometimes the new feature vectors are normalized by the eigenvalues in the transformed 

space in order to minimize the within-class scatter, i.e., 

.,...,1,,...,1],...[
2

2

1

1
i

n

i
mn

i
m

i
mi

m NmCi
yyy

y ===
λλλ

                 (3.9) 

 

3.5.1 Computational Considerations 

If the dimensionality d of the sample space is too large, the total scatter matrix dxd
TS ℜ∈  

will be a huge matrix, e.g., in face recognition tasks images of size 256 by 256 yield scatter 

matrices of size 65,536 by 65,536. Computing the eigenvalues and eigenvectors of dxd
TS ℜ∈  

will be difficult and numerically unstable in these cases. However, the eigenvectors and 

corresponding eigenvalues can be obtained by calculating the eigenvectors of the smaller M 

by M matrix, T
T

T AA , defined such that T
TTT AAS = , where TA  is given in (3.6). Let kλ and 

kv be the k-th nonzero eigenvalue and the corresponding eigenvector of MxM
T

T
T AA ℜ∈ , i.e., 
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.,...,1,)( rtkvvAA kkkT
T

T == λ                          (3.10) 

Then, 

,,...,1,)( rtkvAvAAA kTkkT
T

TT == λ                                 (3.11) 

which means that kTk vAw =  will be the eigenvector corresponding to the k-th nonzero 

eigenvalue of TS . 

 

 

Figure 3.1: Eigenvectors found by the PCA Method. The PCA Method suggests choosing the most 
significant vector 1w  for feature extraction since it shows the direction of the maximum variation. 
This will cause misclassification in the transformed space. However, if the less significant 
eigenvector 2w  is chosen for feature extraction, all samples can be classified correctly. Therefore, 
PCA Method may not be suitable for pattern recognition tasks. 
 

3.5.2 Drawbacks of PCA  

The PCA Method is an unsupervised method since it does not consider the classes within the 

training set data. Although it is optimal for reconstruction, it is not necessarily optimal from a 
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discrimination point of view [7], [104]. Thus, the projection vectors chosen for optimal 

reconstruction may obscure the existence of separate classes. This fact is illustrated in Figure 

3.1. In this figure two linearly separable classes with Gaussian distributions having similar 

covariance matrices are plotted. As can be seen in the figure, choosing the first significant 

eigenvector 1w  for feature extraction discards the discriminatory information and causes 

classification errors. Therefore, the PCA Method may cause loss of very important 

discriminatory information for classification even though this information is not very 

important for representation of data. 

 

3.6 Linear Discriminant Analysis (LDA) 

A typical way to attack a pattern recognition problem is first to estimate Gaussian (normal) 

density functions of classes assuming Gaussian distributions for all classes and then construct 

the quadratic discriminant functions that specify the decision boundaries by using the 

estimated density functions. However, it has been proved that the required number of training 

sample patterns is linearly related to the square of dimensionality of the feature space for a 

quadratic classifier. Therefore, it is almost impossible to obtain acceptable recognition rates 

by utilizing density estimation procedures when the dimensionality of the sample space is 

large compared to the number of training sample patterns. One way to simplify the problem 

is to assume that all classes have Gaussian distributions with identical covariance structures. 

In this case, the discriminant functions are linear, and the required number of training 

samples is linearly related to the dimensionality of the sample space. Linear Discriminant 

Analysis techniques are based on these assumptions, and they seek projection directions that 

maximize the between-class separability and minimize the within-class variability. Thus, by 
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applying these approaches, we find projection directions that on one hand maximize the 

distance between the samples of different classes, and on the other, minimize the distance 

between samples of the same class. Although LDA techniques are based on heavy 

assumptions that may not hold in many applications, it turned out that the linear discriminant 

functions can produce acceptable results even when the covariance structures are different. 

Thus, LDA approaches have been successfully applied in many classification problems such 

as image recognition, multimedia information retrieval, and medical applications. In the 

following sections we will examine these approaches in more detail. 

 

3.7 Linear Discriminant Methods that Use Non-Orthogonal Projection Vectors  
for Feature Extraction 

All methods in this category use projection vectors satisfying the orthogonality constraints 

ijjW
T
i wSw δ=  or ijjT

T
i wSw δ= . Therefore, the data samples in the transformed space will be 

uncorrelated after feature extraction step. 

 

3.7.1 The Fisher’s Linear Discriminant Analysis Method 

This method was originally proposed by Fisher for taxanomic problems [36]. Although this 

method can be applied to the classes with different distributions, it becomes optimal Bayes 

classifier when all classes have Gaussian distribution with identical covariance structures. 

The method aims to maximize the Fisher’s Linear Discriminant Analysis criterion,  

||
||

max
|~|
|~|

max)(
WSW
WSW

S
S

WJ
W

T
B

T

W

B
optFLDA == ,                               (3.12) 

subject to the normalization constraint ijjW
T
i wSw δ= . Here BS~  and WS~  represent new 

between-class and within-class scatter matrices in the transformed space, and |.|  represents 
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the determinant operation. The FLDA criterion simply measures the square of the 

hyperellipsoidal scattering volume. This criterion is maximized when the column vectors kw  

of the projection matrix W are the eigenvectors corresponding to the nonzero eigenvalues of 

the matrix BW SS 1− . However, to find these eigenvectors, WS  must be nonsingular. Since the 

rank of the between-class scatter matrix BS  cannot be bigger than C-1, we cannot obtain 

more than C-1 projection directions for feature extraction. Therefore, new dimensionality of 

the transformed space can be at most C-1. If WS  is isotropic, the projection directions will 

span the range space of BS . In this special case, the projection directions can be found by 

applying the Gram-Schmidt orthonormalization procedure to the C-1 vectors, 

.1,...,1, −=− Cii µµ  

 

Computational Considerations 

The matrix BW SS 1−  is typically not symmetric. Therefore, the eigen-decomposition of 

BW SS 1−  may be unstable. To avoid this problem, the simultaneous diagonalization algorithm 

is often employed to obtain a stable eigen-decomposition [39], [104]. Assuming WS  is 

nonsingular, this algorithm can be summarized as follows: 

Step 1: Find the eigenvalues and corresponding eigenvectors of WS . Let 

]...[ 21 duuuU =  be the orthogonal matrix whose columns are computed 

eigenvectors and WΛ  be a diagonal matrix with nonzero eigenvalues. We assume WS  is 

nonsingular hence, there are d nonzero eigenvalues. Then, T
WW UUS Λ= . Choose the 

transformation 2/1−Λ= WUZ  that whitens WS  such that  
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IZSZIUSU W
T

WW
T

W =⇔=ΛΛ −− )()( 2/12/1 .                                 (3.13) 

Step 2: Find the nonzero eigenvalues and corresponding eigenvectors of ZSZY B
T= . Let V 

be the matrix whose columns are computed eigenvectors and YΛ  be the diagonal matrix of 

nonzero eigenvalues. 

]...[ 21 rbvvvV =                                             (3.14) 

and 

),...,,( 21 rbY diag λλλ=Λ ,                                            (3.15) 

where rb is the rank of BS  and rb cannot be bigger than C-1.  

Step 3: Let VUW W
2/1−Λ= . Then W diagonalizes BS  and WS  at the same time. Since 

T
WW UUS 11 −− Λ= , the matrix BW SS 1−  becomes 

.           

           
1

2/12/1

2/12/111

−

−

−−

Λ=

ΛΛΛ=

ΛΛΛΛ=

WW

UVVU

UVVUUUSS

Y

T
W

T
YW

T
W

T
YW

T
WBW

                                  (3.16) 

Therefore YΛ  is the diagonal matrix of eigenvalues of BW SS 1−  and W is the matrix whose 

columns are the eigenvectors of BW SS 1− . 

The projection matrix W diagonalizes both BS  and WS , and all projection vectors are 

orthogonal with respect to the scatter matrices, i.e., ijjW
T
i wSw δ= , ijijB

T
i wSw δλ= , 

ijijT
T
i wSw δλ )1( += , where iλ  is the nonzero eigenvalue of the matrix Y. Recently Jin et al. 

proposed the Uncorrelated Optimal Discriminant Vector Method (UODV) [60], [61]. This 

method finds the projection vectors that maximize the FLDA criterion subject to the 
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constraint ijjT
T
i wSw δ= . Authors proposed the following iterative algorithm to find these 

projection vectors successively.  

Step 1: Finding the first projection direction 1w : 

The first projection direction is the vector maximizing the criterion 
wSw
wSwwJ

W
T

B
T

FLDA max)( = . 

It is the eigenvector corresponding to the maximum eigenvalue of BW SS 1− . 

Step 2: Finding remaining projection directions 1,...,2, −= Cjw j : 

The j-th uncorrelated optimal discriminant vector, jw , is the eigenvector corresponding to 

the maximum eigenvalue of the following eigen-equation: 

jWjjBj wSwSU λ= ,                                                (3.17) 

where 

,1 IU =                                                           (3.18) 

111 )( −−−−= WTj
T
jTWTj

T
jTj SSDDSSSDDSIU ,                               (3.19) 

T
jj wwwD ]...[ 121 −= .                                        (3.20) 

In these equations dxdI ℜ∈  represents the identity matrix. Although the UODV Method is 

called differently, it gives rise to the same projection vectors as the FLDA Method with the 

exception that the norms of the projection vectors are different. The iterative algorithm 

proposed by Jin et al. is computationally too expensive and unstable compared to the 

simultaneous diagonalization algorithm used for the FLDA Method. Thus, it makes more 

sense to compute the projection directions using the simultaneous diagonalization algorithm. 

Then projection vectors can be easily normalized such that they satisfy the constraint, 

ijjT
T
i wSw δ= . 
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3.7.2 The PCA+FLDA Method 

The FLDA criterion 
||
||max)(

WSW
WSWWJ

W
T

B
T

optFLDA =  is maximized when the column vectors 

of the projection matrix W are the eigenvectors of BW SS 1− . In pattern recognition tasks with 

high dimensional spaces, the FLDA Method cannot be applied directly. This stems from the 

fact that the rank of WS  is at most M-C, and, in general, the number of the samples in the 

training set, M, is smaller than the dimensionality of the sample space d. As a consequence, 

WS  is singular in this case. This problem is also known as the “small sample size problem” 

[39]. 

In the last decade numerous methods have been proposed to solve this problem. These 

methods can be classified into two basic groups. The methods in the first group apply linear 

algebra techniques to solve the numerical problem of inverting the singular matrix WS . For 

instance, Tian et al. [108] used the Pseudo-Inverse Method of replacing 1−
WS  with its 

pseudo-inverse. The Perturbation Method is used in [53] and [136], where a small 

perturbation matrix ∆ is added to WS  in order to make it nonsingular. However, the above 

methods are typically computationally expensive since the scatter matrices are very large 

(e.g., images of size 256 by 256 yield scatter matrices of size 65,536 by 65,536). The 

methods in the second group reduce the dimensionality of the original sample space for 

solving the singularity problem. Swets and Weng [104] proposed a two stage PCA+FLDA 

method, also known as the Fisherface Method since it was first proposed for face recognition, 

in which PCA is first used for dimension reduction so as to make WS  nonsingular before the 

application of LDA. The algorithm for the PCA+FLDA Method is given below: 
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Step 1: Find the nonzero eigenvalues and corresponding eigenvectors of TS  by using a 

smaller matrix, MxM
T

T
T AA ℜ∈ , where T

TTT AAS = . Select the most significant rw 

eigenvectors ku  and form the matrix 

]...[ 21 rwuuuU = ,                                           (3.21) 

where rw is the rank of WS  and rw cannot be bigger than M-C. 

Step 2: Reduce the dimensionality of the sample space by applying the transformation 

.,...,1,,...,1,~
i

i
m

Ti
m NmCixUx ===                               (3.22) 

In the transformed space, the new within-class scatter matrix rwxrw
WS ℜ∈~ , and the new 

between-class scatter matrix rwxrw
BS ℜ∈~  will be 

USUS W
T

W =~ ,                                                        (3.23) 

  USUS B
T

B =~ .                                                       (3.24) 

Step 3: Find the eigenvectors corresponding to the nonzero eigenvalues of BW SS ~~ 1−  by 

applying the simultaneous diagonalization algorithm. Let V be the matrix whose columns are 

the computed eigenvectors. The final projection vector matrix W that will then be used for 

feature extraction is given by 

UVW = .                                                          (3.25) 

Although this method is computationally feasible, some directions corresponding to the 

small eigenvalues of TS  are discarded in the PCA step in order to make WS  nonsingular. 

Thus, applying PCA for dimensionality reduction has the potential to remove dimensions that 

contain discriminative information [55], [129], [133]. 
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3.7.3 The Direct-LDA Method 

The Direct LDA Method has been recently proposed for small sample size problems [133]. 

This method also reduces the dimensionality of the sample space for solving the singularity 

problem of WS . It uses the simultaneous diagonalization method to find the optimal 

projection vectors in the range space of BS . The algorithm can be summarized as follows: 

Step 1: Diagonalizing and Whitening of BS : 

(i) Find the nonzero eigenvalues and corresponding eigenvectors of BS . Let 

]....[ 21 rbuuuU =  be the matrix whose columns are computed eigenvectors 

corresponding to the nonzero eigenvalues and BΛ  be a diagonal matrix with nonzero 

eigenvalues. Here rb represents the rank of BS  and rb cannot be larger than C-1.  

USU B
T

B =Λ                                                       (3.26) 

(ii) Choose the transformation 2/1−Λ= BUZ  that whitens BS . Then, 

IZSZIUSU B
T

BB
T

B =⇔=ΛΛ −− )()( 2/12/1  and KZSZ W
T = ,                 (3.27) 

where I is the identity matrix. 

Step 2: Diagonalizing and Whitening of WS : 

(i) Calculate the eigenvalues and corresponding eigenvectors of K. Let V be the matrix whose 

columns are the computed eigenvectors and KΛ  be the diagonal matrix of eigenvalues. 

]...[ 21 rbvvvV =                                             (3.28) 

and 

),...,,( 21 rbK diag λλλ=Λ ,                                            (3.29) 

where KW
TT ZVSZV Λ=  or K

T KVV Λ= . 
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(ii) Let ZVY = . Then, KW
T YSY Λ=  and IYSY B

T =  

(iii) Final transformation, which spheres the data, will be 2/1−Λ= KYW . Then, IWSW W
T =  

and 1−Λ= KB
T WSW . 

However, the range space of BS  is not always a good choice to obtain the optimal 

projection vectors [22], [55], [129]. This phenomenon can be clearly seen in the following 

example. In Figure 3.2, we plotted two linearly separable classes with Gaussian distribution 

having similar covariance matrices. Class means are shown as stars. Since the class 

distributions are Gaussian and similar, we expect the LDA functions to be optimal in this 

case. As can be seen in the figure, although the FLDA Method successfully discriminates all 

samples, the Direct-LDA Method fails for this example. Thus, the optimal projection vectors 

are not necessarily in the range space of BS . These two methods produce the same results if 

the ranks of both BS  and WS  are equal to the dimensionality of the sample. The Direct-LDA 

Method extracts optimal discriminant features if the within-class scatter is isotropic or the 

range space )( BSR  of the between-class scatter matrix includes the range space )( WSR  of 

the within-class scatter matrix (i.e., )()( WB SRSR ⊇  or )()( TB SRSR = ). However, these 

conditions are not typically satisfied for the small sample size case. Therefore, the Direct-

LDA Method fails to extract optimal projection vectors for feature extraction in most cases. 

Furthermore, BS  is whitened as a part of this method. This whitening process can be 

shown to be redundant and therefore should be skipped. In [79], [80], and [81], the authors 

claim that the Direct-LDA Method finds the projection vectors in the intersection space of 

the null space of WS  and the range space of BS . However, this statement is not correct, and 

this issue will be explained in the upcoming sections. 
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3.2: Two different linearly separable classes are plotted. Stars represent class means, and lines 
represent the decision boundaries found by the Direct-LDA and FLDA methods. 
 

 
3.8 Linear Discriminant Methods that Use Orthonormal Projection Vectors for  

Feature Extraction 

All methods in this category use orthonormal projection vectors for feature extraction. Since 

the projection vectors are not necessarily orthogonal with respect to the scatter matrices, the 

data samples in the transformed space may be correlated. 

 

3.8.1 The Generalized Optimal Discriminant Vector Method 

The FLDA Method defines a linear transformation in terms of eigenvectors corresponding to 

the nonzero eigenvalues of  BW SS 1−  subject to the orthogonality constraint ijjW
T
i wSw δ= . 

Since the rank of  BS  can be at most C-1, we cannot use more than C-1 projection vectors for 

feature extraction. In some pattern recognition tasks, these projection vectors may not be 
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sufficient for a good recognition performance. Therefore, an alternative method for the 

FLDA was proposed by Foley and Sammon [37] for the two class problem to maximize the 

FLDA criterion, 
wSw
wSwwJ

W
T

B
T

optFLDA max)( = , subject to the constraint ijj
T
i ww δ= . This 

method was generalized to the multi-class case by Okada and Tomita and called as the 

Orthonormal Discriminant Vector (ODV) Method [92]. They proposed an iterative algorithm 

to obtain the optimal projection vectors successively. The first projection vector is the 

normalized eigenvector corresponding to the largest eigenvalue of BW SS 1− . Thus, the first 

projection vectors of the ODV Method and the FLDA Method are the same. The second 

projection vector maximizes the FLDA criterion subject to the orthogonality criterion 

012 =wwT , the third projection vector maximizes the FLDA criterion subject to orthogonality 

criteria 013 =wwT  and 023 =wwT , and so on. The proposed algorithm involves a search for a 

subspace, taking the inverse of a symmetric positive definite matrix, and eigen-

decomposition of a non-symmetric matrix in each iteration. Thus, this algorithm is 

computationally too expensive. Another drawback of the algorithm is that it is not suitable 

for the small sample size case. Additionally, Duchene and Leclercq proposed an iterative 

algorithm for obtaining the orthonormal optimal projection vectors based on the Lagrange’s 

method [31]. However, this algorithm is also computationally too expensive and is not 

suitable for the small sample size case similar to the ODV Method. Liu et al. introduced a 

new method called the Generalized Optimal Discriminant Vector (GODV) based on the 

modified FLDA criterion, 
iT

T
i

iB
T
i

iMFLDA wSw
wSw

wJ max)( =  subject to the constraint ijji ww δ=  

[74]. They showed that the original FLDA criterion can be replaced by the modified FLDA 
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criterion in the course of solving the discriminant vectors of the optimal set. They modified 

the algorithm proposed by Okada and Tomita such that it uses the modified FLDA criterion 

and can be used for the small sample size case. However, this algorithm is also 

computationally too expensive since it is iterative and includes a search for a subspace, 

taking the inverse of a symmetric positive definite matrix, and the eigen-decomposition of a 

non-symmetric matrix in each iteration. The details of the algorithm for the GODV Method 

can be summarized as follows: 

The Algorithm implementing the GODV Method: 

Let },0|{)( d
TT xxSxSN ℜ∈==  (i.e., null space of TS ) and )( TSR  be the 

complementary subspace (i.e., range of TS ) of )( TSN . 

Step 1: Calculating the first optimal projection vector 1w : Let  

},...,,{)( )1()1(
2

)1(
1 rtT spanSR ϕϕϕ=                                          (3.30) 

where )1()1(
2

)1(
1 ,...,, rtϕϕϕ  are the orthonormal vectors. 

Case 1 ( drt = ): in this case, 1w  is the unit eigenvector corresponding to the largest 

eigenvalue of BT SS 1− . 

Case 2 ( drt <<1 ): Let ]...[ )1()1(
2

)1(
1

)1(
rtP ϕϕϕ=  and )1(Z be the eigenvector 

corresponding to the largest eigenvalue of )()( )1()1(1)1()1( PSPPSP B
T

T
T − . Then, 1w  is 

determined by the following formula 

||||/ )1()1()1()1(
1 ZPZPw = .                                         (3.31) 
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Step 2: Calculating the j-th discriminant vector jw : 

Let },...,,{)( 21 rtdT spanSN −= ααα  where the orthonormal vector set },...,,{ 21 rtd−ααα  is 

orthogonal to the orthonormal vector set { )1()1(
2

)1(
1 ,...,, rtϕϕϕ }. Suppose 

},...,,,...,,{ 1121
)(

rtdj
j wwwspanV −−= αα  is the subspace spanned by the optimal projection 

vectors { 121 ,...,, −jwww } which have been found previously, and the vectors 

},...,,{ 21 rtd−ααα . Let }...,,{ )(
1

)(
2

)(
1

)( j
jrt

jjj spanV +−= ϕϕϕ  is the complementary subspace of 

)( jV , where }...,,{ )(
1

)(
2

)(
1

j
jrt

jj
+−ϕϕϕ  are the orthonormal vectors. Let, 

]...[ )(
1

)(
2

)(
1

)( j
jrt

jjjP +−= ϕϕϕ  and )( jZ be the eigenvector corresponding to the 

largest eigenvalue of )()( )()(1)()( j
B

Tjj
T

Tj PSPPSP − . Then jw  is determined by the following 

formula 

||||/ )()()()( jjjj
j ZPZPw = .                                      (3.32) 

 

3.8.2 The Null Space Based Methods 

The modified FLDA criterion 
WSW

WSW
WJ

T
T

B
T

optMFLDA max)( =  attains its maximum, 1 if the 

projection vectors are chosen from the null space )( WSN  of WS . However, this criterion is 

not appropriate since its maximum is not unique for the small sample size case. In particular, 

every projection vector matrix W such that 0=WSW W
T  and 0≠WSW B

T  maximizes the 

modified FLDA criterion. Note that if WS  is singular, which is always the case for the small 

sample size problem, there are many such projection vector matrices W. However, it is not 

reasonable to use matrices W with a small number of projection vectors since they may not 
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be sufficient for an optimal feature extraction. On the other hand, the following criterion 

given in [7] and [19] has a unique maximum and it also maximizes the modified FLDA 

criterion 

||max ||max)(
0||0||

WSWWSWWJ T
T

WSW
B

T

WSW
opt

W
T

W
T ==

== .                          (3.33) 

Therefore, to find the optimal projection vectors w in the null space )( WSN  of WS , we 

first project the training set samples onto )( WSN  and then obtain the projection vectors by 

performing PCA. After this operation, we obtain a set of orthonormal vectors that is a basis 

for a space which we call the optimal discriminant subspace. The optimal discriminant 

subspace is the intersection of )( WSN  and the range space )( TSR  of the total scatter matrix 

TS . The modified FLDA criterion and the criterion given in (3.33) attain their maximum for 

orthonormal vectors that form a basis for the optimal discriminant subspace. This method 

was first proposed by Chen et al. for face recognition and called the Null Space Method. 

However, they did not propose an efficient algorithm for applying this method in the original 

sample space. Instead, the so-called pixel grouping method is applied to extract geometric 

features and reduce the dimension of the sample space. Then they applied the Null Space 

Method in this new reduced space. However, it has been observed that the performance of 

the Null Space Method depends on the dimension of the null space of WS  in the sense that 

larger dimension provides better performance. Thus, any kind of pre-processing that reduces 

the original sample space should be avoided [19].  
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The Optimal Discriminant Subspace Concept 

If the dimensionality d of the sample space is larger than M-1, all scatter matrices will be 

rank deficient. Thus, if we apply eigen-decomposition to the scatter matrices, we will obtain 

some eigenvectors corresponding to the zero eigenvalues that span the null spaces of the 

scatter matrices. As explained previously, if the projection directions are chosen from 

)( WSN , the modified FLDA criterion attains its maximum, 1. Therefore, we must first 

project the training set data onto )( WSN . Then, optimal projection vectors can be obtained 

by applying PCA to the samples, which are projected onto )( WSN . The fact that the optimal 

projection vectors span the optimal discriminant subspace follows from the following lemma.  

Lemma 3.1: Suppose U  is a matrix whose column vectors ku ( drtk ,...,1+= , where rt  is 

the rank of TS ) are orthonormal vectors that span the null space )( TSN  of TS . If all samples 

in the training set are projected onto )( TSN , they produce a unique common vector such that 

i
m

T xUUx = ,     iNmCi ,...,1,,...,1 == ,                                (3.34) 

where x is independent of indices i and m. 

Proof: By definition, a vector du ℜ∈  is in )( TSN  if 0=uST . Let µ  be the mean vector of 

the samples in the training set, MxM
M ℜ∈1  be the matrix with all elements equal to 1−M , and 

dxMX ℜ∈  be the matrix whose columns are the training set samples. Thus, by multiplying 

both sides of identity 0=uST  by Tu , we obtain 

2

1 1
||)1(||)1)(1())((0 uXIuXIIXuuxxu T

M
TT

MM
TTi

m

C

i

N

m

i
m

Ti

−=−−=−−∑ ∑=
= =

µµ ,  (3.35) 

where ||.|| denotes the Euclidean norm. Thus, (3.35) holds if 0)1( =− k
T

M uXI , or 

k
T

Mk
T uXuX 1= . From this relation, it can be seen that 
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.,...,1,,...,1,,...,1,)( drtkNmCiuux ik
T

k
Ti

m +==== µ            (3.36) 

Thus the projection of any i
mx  onto )( TSN , 

kk

d

rtk
kk

d

rtk

i
m uuuuxx 〉∑〈=〉∑〈=

+=+=
,,

11
µ ,  ,,...,1,,...,1 iNmCi ==              (3.37) 

is independent of m and i, which proves the lemma.                                                                ⁮ 

This lemma shows that, )( TSN  does not contain any discriminative information, which can 

be used in the course of obtaining the optimal projection vectors. Therefore, the null space of 

TS  can be removed. Then, the remaining subspace for extracting the optimal features of 

discrimination will be the intersection of )( WSN  and )( TSR . 

There are numerous algorithms to find the optimal discriminant subspace and optimal 

projection vectors that span it. The following observation proposed by Therrien [107] can be 

used to find optimal projection vectors and the optimal discriminant subspace. 

Observation 3.1: Let )(iL , ni ,...,1= , be a subspace of dℜ . A vector e is contained in 

I
n

i

iL
1

)(

=
if and only if it is an eigenvector of Ψ corresponding to an eigenvalue of 1, where 

∑=Ψ
=

n

i

i
i Pa

1

)(                                     (3.38) 

with )(iP  being the projection matrix (also called the orthogonal projection operator) of the i-

th subspace and 1  ,10
1

=∑<<
=

n

i
ii aa . 

In our case we can choose )1(L  and )2(L  as )( TSR  and )( WSN , respectively, to find 

orthonormal vectors that span the optimal discriminant space. However, this approach is not 

always practical for real applications since the size of projection matrices of subspaces may 
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be too large (e.g., images of size 256 by 256 yield projection matrices of size 65,536 by 

65,536). We will use this observation for the numerical example that will be given later. 

There are computationally better ways to find the optimal projection vectors by using 

smaller sets of basis vectors instead of projection matrices . This is a result of the fact that the 

projection matrices of )( WSN  and )( TSR  commute, as shown in Theorem 3.1 below, namely 

)1()2()2()1( PPPP = , where )1(P  and )2(P  represent the projection matrices of )( TSR  and 

)( WSN , respectively. In this case, the projection matrix of the intersection )()( TW SRSN ∩  

is found by the equation 

)1()2()2()1( PPPPPopt == ,                                             (3.39) 

where optP  is the projection matrix of the optimal discriminant subspace [121]. A 

consequence of Theorem 3.1 is that to obtain the optimal projection vectors, we can first 

project the training set samples onto )( WSN  and then apply PCA or, alternatively, we can 

first project the training set samples onto )( TSR  through PCA, and then find the null space in 

the transformed space. The DCV Method [19] uses the first approach, whereas the PCA+Null 

Space Method [55] uses the second approach. All projections are performed economically by 

using the basis vectors.  

Before we prove Theorem 3.1 given below, we need the following auxiliary lemma. 

Lemma 3.2: Let )1(L , )2(L  be subspaces of dℜ , ⊥)1(L , ⊥)2(L  be their orthogonal 

complements, and )1(P , )2(P  be the orthogonal projection matrices onto )1(L  and )2(L , 

respectively. If ⊥⊥ ⊥ )2()1( LL , then )1(P  and )2(P  commute, that is )1()2()2()1( PPPP = . 

Proof: If ⊥⊥ ⊥ )2()1( LL  then clearly 0))(( )2()1( =−− PIPI  and 0))(( )1()2( =−− PIPI . Thus,  
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0))(())(( )1()2()2()1( =−−=−− PIPIPIPI ,                          (3.40) 

)1()2()2()1()2()1()2()1( PPPPIPPPPI −−−=−−− ,                     (3.41) 

which implies )1()2()2()1( PPPP = .                                                                                            ⁮ 

We are now ready to prove the following theorem: 

Theorem 3.1: Let )1(P  and )2(P  be the projection matrices of the subspaces )( TSR  and 

)( WSN , respectively. Then )1(P  and )2(P  commute, i.e., )1()2()2()1( PPPP = . 

Proof: Let )()1(
TSRL =  and let )()2(

WSNL = . Clearly, )()1(
TSNL =⊥  and )()2(

WSRL =⊥ . 

By using Lemma 1 from [13], 

),()(            
)()(

WB

WBT

SNSN
SSNSN
∩=
+=

                                       (3.42) 

and, in particular, )()( WT SNSN ⊂ , which, together with the fact that )()( WW SRSN ⊥ , 

shows that 

)()( WT SRSN ⊥  or ⊥⊥ ⊥ )2()1( LL .                                      (3.43) 

The assertion of the theorem now follows from Lemma 3.2.                                                   ⁫ 

In [79], [80], and [81], the authors claim that the Direct-LDA Method finds the projection 

vectors in the intersection space of )( WSN  and )( BSR . Thus, the projection vectors found by 

this method should be optimal and equivalent to the ones found by the Null Space Method 

(equivalently the DCV Method and the PCA+Null Space Method). However this statement is 

incorrect. In fact, neither the Direct-LDA Method nor the Null Space Method finds the 

projection vectors in the intersection space of )( BSR  and )( WSN . The projection directions 

obtained by the Direct-LDA Method come from )( BSR , and the intersection of )( BSR  and 

)( WSN  is in fact often trivial. Indeed, in all the database examples with the small sample size 



 40

case considered in this study, the intersection was trivial. Therefore, the intersection space of 

)( BSR  and )( WSN  cannot be used for recognition. This fact is also illustrated in Figure 3.3. 

In Figure 3.3, two classes with the same covariance matrices having two samples each in a 3-

dimensional space are plotted. )( WSR  and )( BSR  are shown in the figure. In this example, 

)( TSR  is the plane spanned by the vectors representing )( WSR  and )( BSR , and )( TSN  is 

the line perpendicular to this plane. Note that it is also the intersection of )( BSN  and 

)( WSN . The optimal discriminant subspace, )()( WT SNSR ∩ , is the line in this plane that is 

perpendicular to )( WSR . )( WSN  is the plane spanned by the vectors representing )( TSN  

and )()( WT SNSR ∩ . As can be seen in the figure, the intersection of )( WSN  and )( BSR  is 

the trivial space.  

 

Figure 3.3: Illustration of the optimal discriminant subspace. 

 

)( WSR  

)( BSR  

)()( WT SNSR ∩  )()()( BWT SNSNSN ∩=  
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The projection vectors found by the Direct-LDA Method and the Null Space Method also 

differ in terms of orthogonality properties. The projection vectors found by the Direct-LDA 

Method satisfy the orthogonality property, ijjW
T
i wSw δ= , whereas the projection vectors 

found by the Null Space Method satisfy the property, ijji ww δ= . 

 

The Discriminative Common Vector Method 

The Discriminative Common Vector Method suggests the projection of all training set 

samples onto )( WSN  as the Null Space Method. Then, the final optimal projection vectors, 

which will be used for feature extraction, are found by applying PCA to the projected 

samples. However, the DCV Method omits the dimension reduction step of the Null Space 

Method and therefore it exploits the original high-dimensional space. 

The idea of common vectors was originally introduced for isolated word recognition 

problems in the case where the number of samples in each class was less than or equal to the 

dimensionality of the sample space [44], [45]. These approaches extract the common 

properties of classes in the training set by eliminating the differences of the samples in each 

class. A common vector for each individual class is obtained by removing all features that are 

in the direction of the eigenvectors corresponding to the nonzero eigenvalues of the scatter 

matrix of its own class. The common vectors are then used for recognition. In our study, 

instead of using a given class’s own scatter matrix, we use the within-class scatter matrix of 

all classes to obtain the common vectors. We also give an alternative algorithm to obtain the 

common vectors based on the subspace methods and the Gram-Schmidt orthogonalization 

procedure. Then, a new set of vectors, called the discriminative common vectors, which will 
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be used for classification, are obtained from the common vectors. We introduce algorithms 

for obtaining the common vectors and the discriminative common vectors below. 

 

Obtaining the Discriminative Common Vectors by Using the Range Space of the Within-
Class Scatter Matrix 

To find the optimal projection vectors w in the null space of WS , we project the training set 

samples onto the null space of WS  and then obtain the projection vectors by performing 

PCA. To do so, vectors that span the null space of WS  must first be computed. However, this 

task is computationally intractable since the dimension of this null space can be very large. A 

more efficient way to accomplish this task is by using the orthogonal complement of the null 

space of WS , which typically is a significantly lower-dimensional space.  

Let dℜ  be the original sample space, )( WSR  be the range space of WS , and )( WSN  be 

the null space of WS . Equivalently,  

},...,1,0|{)( rwkSspanSR kWkW =≠= αα                    (3.44) 

and 

},...,1,0|{)( drwkSspanSN kWkW +=== αα ,                    (3.45) 

where drw <  is the rank of WS , },....,{ 1 dαα  is an orthonormal set, and },....,{ 1 rwαα  is the 

set of orthonormal eigenvectors corresponding to the nonzero eigenvalues of WS . 

Consider the matrices ]....[ 1 rwQ αα=  and ]....[ 1 drwQ αα += . Since 

)()( WW
d SNSR ⊕=ℜ , every sample di

mx ℜ∈  has a unique decomposition of the form 

i
m

i
m

i
m zyx += ,                                                      (3.46) 
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where )( W
i
m

Ti
m

i
m SRxQQPxy ∈== , )( W

i
m

Ti
m

i
m SNxQQxPz ∈== , and P  and P  are the 

orthogonal projection operators onto )( WSR  and )( WSN , respectively. Our goal is to 

compute  

i
m

i
m

i
m

i
m

i
m Pxxyxz −=−= .                                           (3.47) 

To do this, we need to find a basis for )( WSR , which can be accomplished by an eigen-

analysis of WS . In particular, the normalized eigenvectors kα  corresponding to the nonzero 

eigenvalues of WS  will be an orthonormal basis for )( WSR . The eigenvectors can be 

obtained by calculating the eigenvectors of the smaller M by M matrix, W
T
W AA , defined such 

that T
WWW AAS = , where WA  is a d by M matrix given in (3.4). Let kλ and kv be the k-th 

nonzero eigenvalue and the corresponding eigenvector of W
T
W AA , where CMk −≤ . Then 

kWk vA=α  will be the eigenvector that corresponds to the k-th nonzero eigenvalue of WS . 

The sought-for projection onto )( WSN  is achieved by using (3.47). After this process, we 

obtain the same vector for all samples of the same class,  

i
m

Ti
m

Ti
m

i
com xQQxQQxx =−= ,    m=1,…,N,    i=1,...,C,                   (3.48) 

i.e., the vector on the right-hand side of (3.48) is independent of the sample index m. We 

refer to the vectors i
comx  as common vectors. The above fact is proved in the following 

theorem. 

Theorem 3.2: Suppose Q  is a matrix whose column vectors are the orthonormal vectors that 

span the null space )( WSN  of WS . Then, the projections of the samples i
mx  of the class i 

onto )( WSN  produce a unique common vector i
comx  such that   
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i
m

Ti
com xQQx = ,     m=1,…,N,     i=1,…,C.                                (3.49) 

Proof: By definition, a vector dℜ∈α  is in )( WSN  if 0=αWS . Let iµ  be the mean vector 

of the i-th class, G be the N by N matrix whose entries are all 1−N , and iX  be the d by N 

matrix whose m-th column is the sample i
mx . Thus, multiplying both sides of identity 

0=αWS  by Tα  and writing 

∑
=

=
C

i
iW SS

1
,                                                         (3.50) 

with 

TiiiiT
i

i
mi

N

m

i
mi GXXGXXxxS ))(())((

1
−−=−−= ∑

=
µµ ,                     (3.51) 

immediately leads to  

2

11
||))((||)())((0 ααα ∑∑

==
−=−−=

C

i

TiTiTi
C

i

T XGIXGIGIX ,                 (3.52) 

where ||.|| denotes the Euclidean norm. Thus, (3.52) holds if 0))(( =− k
TiXGI α , or 

k
Ti

k
Ti XGX αα )()( = . From this relation we can see that, 

drwkCiNmx k
T

ik
Ti

m ,...,1,,...,1,,...,1,)()( +==== αµα .            (3.53) 

Thus, the projection of i
mx  onto )( WSN , 

kk

d

rwk
ikk

d

rwk

i
m

i
com xx ααµαα 〉∑〈=〉∑ 〈=

+=+=
,,

11
,                                   (3.54) 

is independent of m, which proves the theorem.                                                                       ⁮ 

The theorem states that it is enough to project a single sample from each class. This will 

greatly reduce the computational burden of the calculations. After obtaining the common 
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vectors i
comx , optimal projection vectors will be those that maximize the total scatter of the 

common vectors, 

||maxarg ||maxarg ||maxarg)(
0||0||

WSWWSWWSWWJ com
T

T
T

WSW
B

T

WSW
opt

W
T

W
T

===
==

,      (3.55) 

where W is a matrix whose columns are the orthonormal optimal projection vectors kw , and 

comS  is the scatter matrix of the common vectors, 

T
com

i
comcom

C

i

i
comcom xxS ))((

1
µµ −−=∑

=

 ,    Ci ,...,1= ,                      (3.56) 

where comµ  is the mean of all common vectors, ∑
=

=
C

i

i
comcom x

C 1

1µ . 

In this case optimal projection vectors kw  can be found by an eigen-analysis of comS . In 

particular, all eigenvectors corresponding to the nonzero eigenvalues of comS  will be the 

optimal projection vectors for feature extraction. comS  is typically a large d by d matrix and 

thus we can use the smaller matrix, com
T
com AA , of size C by C, to find nonzero eigenvalues and 

the corresponding eigenvectors of T
comcomcom AAS = , where comA  is the d by C matrix of the 

form 

]....[ 1
com

C
comcomcomcom xxA µµ −−= .                                (3.57) 

There will be C-1 optimal projection vectors since the rank of comS  is C-1 if all common 

vectors are linearly independent. If two common vectors are identical, then the two classes 

which are represented by this vector cannot be distinguished. Since the optimal projection 

vectors kw  belong to the null space of WS , it follows that when the image samples i
mx  of the 

i-th class are projected onto the linear span of the projection vectors kw , the feature vector 
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T
C

i
m

i
mi wxwx ],....,[ 11 ><><=Ω −  of the projection coefficients >< k

i
m wx ,  will also 

be independent of the sample index m. Thus, we have 

i
m

T
i xW=Ω ,   CiNm i ,...,1   ,,...,1 == .                                (3.58) 

We call the feature vectors iΩ  discriminative common vectors, and they will be used for 

classification of samples. Note that 100% recognition accuracy with respect to the training 

set data is achieved if the discriminative common vectors are distinct among themselves. To 

recognize a test image testx , the feature vector of this test image is found by 

test
T

test xW=Ω ,                                                      (3.59) 

which is then compared with the discriminative common vector iΩ  of each class using the 

Euclidean distance. The discriminative common vector found to be the closest to testΩ  is 

used to identify the test image. 

Since testΩ  is compared only to a single vector for each class, the recognition is very 

efficient for real-time recognition tasks.  

The above method can be summarized as follows: 

Step 1: Compute the nonzero eigenvalues and corresponding eigenvectors of WS  by using 

the matrix W
T
W AA , where T

WWW AAS =  and WA  is given by (3.4). Set ]....[ 1 rwQ αα= , 

where rw is the rank of WS . 

Step 2: Choose any sample from each class and project it onto the null space of WS  to obtain 

the common vectors 

i
m

Ti
m

i
com xQQxx −= ,   Nm ,...,1= ,    Ci ,...,1= .                           (3.60) 
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Step 3: Compute the eigenvectors kw  of comS , corresponding to the nonzero eigenvalues, by 

using the matrix com
T
com AA , where T

comcomcom AAS =  and comA  is given in (3.57). There are at 

most C-1 eigenvectors that correspond to the nonzero eigenvalues. Use these eigenvectors to 

form the projection matrix ]....[ 11 −= CwwW , which will be used to obtain feature 

vectors in (3.58) and (3.59). 

 Note that the training set samples will be uncorrelated in the feature space since the new 

total scatter matrix in the transformed space is 

Λ==== WSWWSWSS B
T

T
T

BT
~~ ,                                     (3.61) 

where Λ  is the diagonal matrix of nonzero eigenvalues of comS . 

 

Distinctness of Discriminative Common Vectors 

If all samples in each class are projected onto the null space )( WSN  of WS , they give rise to 

a unique vector called common vector as in (3.49). A natural question arises whether the 

common vectors i
comx , Ci ,...,1=  are distinct or not i.e., whether each of these vectors can be 

uniquely associated with the i-th class. Or, put yet another way, whether there is one-to-one 

correspondence between the common vectors and the classes. For if this is not the case, i.e., 

if j
com

i
com xx = , for some ji ≠ , then the DCV method would not be able to discriminate 

between the two classes i and j, which would render this method less useful. 

The next result shows that this situation is in practice very unlikely, even though it is 

possible in theory. First we state the following necessary condition for the common vectors 

to be distinct. 
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Observation 3.2: Let ji ≠ . For the common vectors j
com

i
com xx  ,  to be distinct it is necessary 

to that the samples j
n

i
m xx  ,  in the corresponding two classes are mutually independent in the 

sense that one cannot find real numbers mα , nβ  satisfying 1
1

=∑
=

iN

m
mα , 1

1
=∑

=

jN

n
nβ  and such that 

j
n

N

n
m

N

m

i
mm xx

ji

∑=∑
== 11
βα .                                                (3.62) 

To explain this, let us first reformulate the above observation. To this end, recall that the 

affine hull, )(aff A , of a finite set kA ℜ∈  is the set (called an affine space) 

},{:)(aff ℜ∈∑=
∈

a
Aa

aaA λλ .                                           (3.63) 

Thus, the above observation can be rephrased by saying that a necessary condition for the 

common vectors of classes i and j to be distinct is that  

=∩ ji AA Ø,                                                        (3.64) 

where iA , jA  are the affine hulls of the vectors in the i-th and j-th classes, respectively. We 

already know that the common vectors i
comx  can be obtained by projecting any iAx ∈  onto 

)( WSN  (for example, x can be chosen to be iµ ). Recall that )()(
1
I
C

i
iW SNSN

=
= , where iS  

represents the scatter matrix of the i-th class. Let us denote the orthogonal projection operator 

of )( WSN  by P . With this notation, we have 

xPxi
com = ,                                                           (3.65) 

whenever iAx ∈ , and 

xPx j
com = ,                                                           (3.66) 
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for jAx ∈ . Thus, if ≠∩ ji AA Ø, then clearly j
com

i
com xx =  since above one can take 

ji AAx ∩∈ , which would give j
com

i
com xxPx == . 

Unfortunately, the above observation does not constitute a sufficient condition for the 

common vectors to be distinct. This can be easily seen by taking classes of vectors satisfying 

=∩ ji AA Ø, for all ji ≠ , but such that }0{)( =WSN , in which case all common vectors 

will be trivial vectors. To arrive at a sufficient condition, it will therefore be necessary to 

impose a condition on linear separability of the considered classes. 

For the purpose of the following result, we will say that the given classes Ci ,...,1=  are 

linearly separable if for each pair ji ≠  there exists a hyperplane dH ℜ∈  strictly separating 

the affine spaces iA  and jA  such that =∩ HAk Ø, for all jik ,≠ . As usual, iA  and jA  are 

said to be strictly separated by H if iA  and jA  are one the opposite sides of H and if 

=∩=∩ HAHA ji Ø. Thus, this concept of separability is stronger than the usual “one-

against-one” separability, but weaker than the “one-against-all” separability. As is well 

known, the above definition is equivalent to saying that there exists a linear functional ϕ  on 

dℜ  such that ji AHA ϕϕϕ <<  and HAk ϕϕ ≠ , jik ,≠ .  

We are now ready to prove the following sufficient condition for existence of distinct 

common vectors. 

Theorem 3.3: Suppose the classes Ci ,...,1=  are linearly separable. Then, the corresponding 

common vectors are distinct. 

Proof: We will show that for any pair ji ≠ , we have j
com

i
com xx ≠ . To this end, let ϕ  be the 

linear functional whose existence is guaranteed by the definition of separability. Let l be the 
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unique one-dimensional subspace of dℜ  such that Hl ⊥  and let lP  the orthogonal 

projection operator onto this subspace. Clearly, also ji AAl ,⊥ . We have  

jljiil APAHAAP ϕϕϕϕϕ =<<= ,                                      (3.67) 

or in particular, jlil APAP ≠ . Also not that l is a subspace of every iS , Ci ,...,1= , which is a 

direct consequence of the fact that HAi || , for all i. Consequently, )()(
1

W

C

i
i SNSNl =⊂

=
I . 

Combining this with the fact that jlil APAP ≠ , we thus obtain 

j
comjlil

i
com xAPAPx =≠=                                              (3.68) 

(since clearly, if the orthogonal projection onto a subspace l are distinct, then so are the 

projections onto a larger space )( WSN ).                                                                                  ⁮ 

 Note that if there are only two classes with corresponding affine hulls 1A  and 2A , then 

linear separability is equivalent to the condition =∩ 21 AA Ø, which is a simple consequence 

of the Hahn-Banach theorem. Thus, for two classes, the above necessary condition is also 

sufficient in this case. 

Corollary 3.1: If all samples i
mx , iNmCi ,...,1 ,,...,1 == , are linearly independent then the 

common vectors i
comx , Ci ,...,1= , are distinct. 

 If the common vectors are distinct, then clearly so are the discriminative common 

vectors. The sufficient conditions of the discriminative common vectors being distinct are 

typically satisfied for the data sets in high-dimensional sample spaces. For instance, for a 

typical face recognition problem with 256-level gray scale face images of size 128x128, the 

volume of the sample space is (16384)256. Since the dimension is so high, it is very likely that 

the training set samples will be linearly independent, and therefore the DCV method can be 
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applied safely for pattern recognition. It has been reported that the generalization 

performance of the DCV method is superior to competing methods for high-dimensional 

pattern classification tasks. In fact, the generalization performance is related to the 

dimensionality of )( WSN  in the sense that the higher dimensions yield better results [13]. 

In some cases, the dimensionality of the sample space may not be large enough to make 

sure that the discriminative common vectors are distinct. There are three basic approaches to 

cope with this situation. First, we can discard all dependent samples. A second solution is to 

add new orthonormal projection vectors, maximizing the between-class scatter, to the 

projection vectors spanning the optimal discriminant subspace from outside the optimal 

discriminant subspace. In this case, since the new projection vectors will be from the range 

space )( WSR  of the within-class scatter matrix of the training samples, the feature vectors 

will not yield the same discriminative common vectors anymore. As a result, 100% 

recognition accuracy is no longer guaranteed since some training samples may be 

misclassified in this case. A third solution would be to map the training samples into a 

higher-dimensional space where the new discriminative common vectors of classes are 

unique, as in the Kernel DCV method introduced in the next chapter.  

 
Obtaining the Discriminative Common Vectors by Using Difference Subspaces and the 
Gram-Schmidt Orthogonalization Procedure 

To find an orthonormal basis for the range of WS , the algorithm, utilizing the eigenvectors of 

WS , uses the eigenvectors corresponding to the nonzero eigenvalues of the M by M matrix 

W
T
W AA , where T

WWW AAS = . Assuming that CMSrank W −=)( , then 

dCCMdMMMMl +−+−+ )(2)2
3

4( 23
3

 floating point operations (flops) are required to 
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obtain an orthonormal basis set spanning the range of WS  by using this approach. Here l 

represents the number of iterations required for convergence of the eigen-decomposition 

algorithm. However, the computations may become expensive and numerically unstable for 

large values of M. Since we do not need to find the eigenvalues (i.e., an explicit symmetric 

Schur decomposition) of WS , the following algorithm can be used for finding the common 

vectors efficiently. It requires only ))()(2( 2 CMdCMd −+−  flops to find an orthonormal 

basis for the range of WS  and is based on the subspace methods and the Gram-Schmidt 

orthogonalization procedure. 

Suppose that d>M-C. In this case, the subspace methods can be applied to obtain the 

common vectors i
comx  for each class )(iω . To do this, we choose any one of the sample 

vectors from the i-th class as the subtrahend vector and then obtain the difference vectors i
jb  

of the so-called difference subspace of the i-th class [45]. Thus, assuming that the first 

sample of each class is taken as the subtrahend vector, we have ii
j

i
j xxb 11 −= + , 

1,...,1 −= iNj . 

The difference subspace iB  of the i-th class is defined as },....,{ 11
i

iN
i

i bbspanB −= . These 

subspaces can be summed up to form the complete difference subspace 

},....,,,....,{.... 1
2

1
1

11
1
11

C
CNNC bbbbspanBBB −−=++= .                         (3.69) 

The number of independent difference vectors i
jb  will be equal to the rank of WS . For 

simplicity, suppose there are M-C independent difference vectors. Since by Theorem 3.5 

given below, B and the range space )( WSR  of WS , are the same spaces, the projection matrix 
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onto B is the same as the matrix P (projection matrix onto the range space of WS ) defined 

previously. This matrix can be computed as 

TT DDDDP 1)( −= ,                                                (3.70) 

where ]........[ 1
2

1
1

11
1
1

C
CNN bbbbD −−=  is a d by M-C matrix [90]. This involves 

finding the inverse of an M-C by M-C nonsingular, positive definite symmetric matrix DDT . 

A computationally efficient method of applying the projection uses an orthonormal basis for 

B. In particular, the difference vectors i
jb  can be orthonormalized by using the Gram-

Schmidt orthogonalization procedure to obtain orthonormal basis vectors CM −ββ ,....,1 . The 

complement of B is the indifference subspace ⊥B  such that 

]....[ 1 CMU −= ββ , TUUP = ,                              (3.71) 

]....[ 1 dCMU ββ +−= , TUUP = ,                                (3.72) 

where P  and P  are the orthogonal projection operators onto B and ⊥B , respectively. Thus 

matrices P  and P  are symmetric and idempotent, and satisfy IPP =+ . Any sample from 

each class can now be projected onto the indifference subspace ⊥B  to obtain the 

corresponding common vectors of the classes, 

.,...,1,,...,1, CiNmxUUxxUU

PxxxPx
i
m

Ti
m

i
m

T

i
m

i
m

i
m

i
com

==−==

−==
              (3.73) 

The common vectors do not depend on the choice of the subtrahend vectors, and they are 

identical to the common vectors obtained by using the null space of WS . This follows from 

Theorem 3.5 below, which uses the results of Lemma 3.3 and Theorem 3.4.  
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Theorem 3.4: Let )( iSN  be the null space of the scatter matrix iS , and ⊥
iB  be the 

orthogonal complement of the difference subspace iB . Then ⊥= ii BSN )(  and ii BSR =)( . 

Proof: See [45]. 

Lemma 3.3: Suppose that CSS ,....,1  are positive semi-definite scatter matrices. Then 

I
C

i
iC SNSSN

1
1 )()....(

=
=++ ,                                           (3.74) 

where N(.) denotes the null space. 

Proof: The null space on the left-hand side of the above identity contains elements α  such 

that 

0)....( 1 =++ αCSS                                                   (3.75) 

or 

0....)....( 11 =++=++ αααααα C
TT

C
T SSSS ,                          (3.76) 

by the positive semi-definiteness of CSS ++ ....1 . Thus, again by the positive semi-

definiteness, )....( 1 CSSN ++∈α  if and only if 

0=αα i
T S ,   i=1,...,C,                                          (3.77) 

or, equivalently, I
C

i
iSN

1
)(

=
∈α .                                                                                                 ⁮ 

Theorem 3.5: Let CSS ,....,1  be positive semi-definite scatter matrices. Then 

CCCW BBSRSRSSRSRB ++=++=++== ....)(....)()....()( 111 ,            (3.78) 

where (.)R  denotes the range. 

Proof: Since it is well known that the null space and the range of a matrix are 

complementary spaces, using the previous Lemma 3.3, we have 
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,....)(....)(

))((....))(())(())....(()....(

11

1
1

11

CC

C

C

i
iCC

BBSRSR

SNSNSNSSNSSR

++=++=

++==++=++ ⊥⊥⊥

=

⊥
I

  (3.79) 

where the last equality is a consequence of Theorem 3.4.                                                        ⁮ 

After calculating the common vectors, the optimal projection vectors can be found by 

performing PCA as described previously. The eigenvectors corresponding to the nonzero 

eigenvalues of comS  will be the optimal projection vectors. However, optimal projection 

vectors can also be obtained more efficiently by computing the basis of the difference 

subspace comB  of the common vectors, since we are only interested in finding an orthonormal 

basis for the range of comS . 

 The algorithm based on the Gram-Schmidt orthogonalization can be summarized as 

follows.  

Step 1: Find the linearly independent vectors i
jb  that span the difference subspace B and set 

},....,,,....,{ 1
2

1
1

11
1
1

C
CNN bbbbspanB −−= . There are a total of rw linearly independent vectors, 

where rw is at most M-C. 

Step 2: Apply the Gram-Schmidt orthogonalization procedure to obtain an orthonormal basis 

rwββ ,....,1  for B and set ]....[ 1 rwU ββ= . 

Step 3: Choose any sample from each class and project it onto B to obtain common vectors 

by using (3.73). 

Step 4: Find the difference vectors that span comB  as 

11
com

j
com

j
com xxb −= + ,     1,...,1 −= Cj ,                                      (3.80) 
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and apply the Gram-Schmidt orthogonalization to obtain an orthonormal basis 11
~,...,~

−Cww  for 

comB . These vectors will be the optimal projection vectors to be used to form the projection 

matrix ]~....~[~
11 −= CwwW , which will in turn be used to obtain feature vectors in (3.58) 

and (3.59). Note that columns of W~  and columns of the projection matrix W (described in the 

previous subsection) span the same space, and hence the matrices obey the equation 

TT WWWW ~~= . However, the training set samples are not necessarily uncorrelated in the 

transformed feature space since the new total scatter matrix WSWSS T
T

BT
~~~~ ==  may not be a 

diagonal matrix. 

 

The PCA+Null Space Method 

In this method, in order to obtain the optimal projection vectors, the training set samples are 

first projected onto the range space of TS  through PCA, and then the vectors that span the 

null space of the new within-class scatter matrix in the transformed space are computed. The 

algorithm is given below: 

Step 1: Compute the nonzero eigenvalues and corresponding eigenvectors ku  of TS  by using 

the matrix MxM
T

T
T AA ℜ∈ , where T

TTT AAS =  and TA  is given by (3.6). Set 

]...[ 1 rtuuU = , where rt  is the rank of TS . Then transform the training set samples by 

the equation, i
m

T xU . Compute the new within-class scatter matrix in the transformed space 

by, 

USUS W
T

W =~ .                                                     (3.81) 



 57

Step 2: Find the orthonormal vectors set that span the null space of WS~ . This can be done 

through an eigen-decomposition of WS~ . The eigenvectors corresponding to the zero 

eigenvalues of WS~  span the null space of WS~ . Let V be the matrix whose columns are the 

computed eigenvectors such that 0~ =VSV W
T . In the transformed space the new scatter 

matrices will be 

UVSUVSUVSUVS B
T

BT
T

T )(ˆ)(ˆ ===                                   (3.82) 

Step 3 (optional): Remove the null space of TŜ  if it exists and rotate the projection 

directions so that the new total and between-scatter matrices are diagonal (i.e., the scatter 

matrices of the feature vectors of the training set samples are uncorrelated). That is, 

T
T LLS Λ=ˆ .                                                         (3.83) 

Then the final projection matrix Ŵ  will be 

UVLW =ˆ .                                                         (3.84) 

The optimal projection vector matrix Ŵ  obtained by the PCA+Null Space Method and the 

optimal projection vector matrix W obtained by the DCV Method are the same if Step 3 is 

carried out. If Step 3 is not used (i.e., UVW =~ ), then columns of W~  and columns of the 

projection matrix W span the same space and hence the matrices obey the equation 

TTT WWWWWW == ~~ˆˆ . 

 

Numerical Example 

In this subsection we present a numerical example to show techniques to compute the 

optimal projection vectors from the optimal discriminant subspace. The samples of each class 
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given below are randomly chosen from the Gaussian distributions with different means and 

same identity covariance matrix. Let  

 Tx ]0.7812    1.4751-   0.3775-   0.5689    0.0403    0.7310[1
1 = ,  

   [ ]Tx 0.2656-   0.2340-   0.2959-   0.2556-   0.6771    0.57791
2 = ; 

[ ]Tx 2.5690    2.2120    2.9409    2.6232    3.4435    2.11842
1 = ,  

T2
2 0.8122]    2.2379    1.0079    2.7990    1.6490    2.3148[=x ; 

   [ ]Tx 2.8217-   1.5563-   2.6355-   1.6101-   0.9177-   3.0078-3
1 = , 

   [ ]Tx 1.0137-   2.9499-   2.5596-   1.9120-   2.1315-   2.7420-3
2 = . 

Thus there are 3=C  classes, each of which contains 2 samples in a 6-dimensional sample 

space. The within-class scatter matrix is 



























=++=

3.7255      1.9322-      1.7239      0.0042       0.1457      0.1479
1.9322-     1.7416     0.0273-      0.2990-     1.2177    0.2777-
1.7239      0.0273-      1.8745      0.2150-     1.7143    0.1860-
0.0042      0.2990-     0.2150-     0.4009      0.2370-     0.0403
0.1457       1.2177       1.7143      0.2370-     2.5495    0.3863-
0.1479      0.2777-     0.1860-    0.0403      0.3863-     0.0663

321 SSSSW . 

The eigenvalues and corresponding eigenvectors of WS  are 

 5.57641 =λ , T
1 0.8064]    0.3656-   0.4428    0.0030-   0.1408    0.0152[=α ; 

 4.36722 =λ  , T
2 0.1459]    0.4721-   0.4227-   0.1043    0.7426-   0.1215[=α ; 

0.41473 =λ  , T
3 0.1279]    0.2352    0.0397    0.9231-   0.2703-   0.0387[=α ; 

04 =λ  , T
4 0.2498]-   0.1483-   0.2937    0.0283-   0.0229    0.9099[=α ; 

05 =λ  , T
5 0.1851]    0.6496    0.3660    0.3629    0.5236-   0.0630[=α ; 

06 =λ  , T
6 ] 0.4642    0.3798    0.6351-   0.0668    0.2843    0.3893 [=α . 
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If we project samples onto )( WSN , we obtain the same unique vector for all samples of the 

same class. We call these vectors common vectors. The common vectors of the classes are 

,]0.0993-   0.4085-   0.3373-   0.2522-   0.4971    0.6131[

,,,,,,

,,,,,,

33
1
222

1
211

1
2

1
266

1
255

1
244

1
2

33
1
122

1
111

1
1

1
166

1
155

1
144

1
1

1

T

com

xxxxxxx

xxxxxxxx

=

><−><−><−=><+><+>=<

><−><−><−=><+><+>=<

αααααααααααα
αααααααααααα

 

,]0.9593    2.0184    0.0059    0.9154    0.5379-   2.6391[

,,,,,,

,,,,,,

33
2
222

2
211

2
2

2
266

2
255

2
244

2
2

33
2
122

2
111

2
1

2
166

2
155

2
144

2
1

2

T

com

xxxxxxx

xxxxxxxx

=

><−><−><−=><+><+>=<

><−><−><−=><+><+>=<

αααααααααααα
αααααααααααα

 

and 

.]0.6994-   2.1055-   0.6488-   1.0584-   0.9010    -3.1844[

,,,,,,

,,,,,,

33
3
222

3
211

3
2

3
266

3
255

3
244

3
2

33
3
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3
111

3
1

3
166

3
155

3
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3
1

3

T

com

xxxxxxx

xxxxxxxx

=

><−><−><−=><+><+>=<

><−><−><−=><+><+>=<

αααααααααααα
αααααααααααα

 

The optimal projection vectors are those that maximize the scatter across the common 

vectors. In other words, the optimal projection vectors are the eigenvectors corresponding to 

the nonzero eigenvalues of comS , where T
com

i

i
comcom

i
comcom )µ)(xµ(xS −∑ −=

=

3

1
 and 

3/
3

1
∑=
=i

i
comcom xµ  The nonzero eigenvalues and the corresponding eigenvectors of comS  are 

 30.10101 =λ , T
1 0.2119]    0.5283    0.0842    0.2528    0.1830-   0.7560[=w ; 

 0.66702 =λ , T
2 0.2981]    0.5364    0.0432    0.2628    0.3751-   -0.6418[=w . 

The projection matrix of the subspace spanned by the optimal projection vectors is 
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

























==

0.1337    0.2718    0.0307    0.1319    0.1506-   0.0311-
0.2718    0.5668    0.0676    0.2745    0.2978-   0.0551
0.0307    0.0676    0.0089    0.0326    0.0316-   0.0359
0.1319    0.2745    0.0326    0.1329    0.1448-   0.0225

0.1506-   0.2978-   0.0316-   0.1448-   0.1741    0.1024
0.0311-   0.0551    0.0359    0.0225    0.1024    0.9834

]][[ 2121
T

opt wwwwP . 

As explained before, optimal projection vectors form an orthonormal basis for the 

intersection subspace of )( WSN  and )( TSR . Thus, Observation 3.1 can also be used to find 

the projection matrix optP  of this intersection subspace. Let )1(P  and )2(P  represent the 

projection matrices of )( TSR  and )( WSN  respectively. Then 



























=+=Ψ

0.5669    0.1359    0.0153    0.0659    0.0753-   0.0156-
0.1359    0.7834    0.0338    0.1372    0.1489-   0.0276
0.0153    0.0338    0.5045    0.0163    0.0158-   0.0180
0.0659    0.1372    0.0163    0.5665    0.0724-   0.0112

0.0753-   0.1489-   0.0158-   0.0724-   0.5871    0.0512
0.0156-   0.0276    0.0180    0.0112    0.0512    0.9917

5.05.0 )2()1( PP , 

where 



























=

0.8216    0.0618-   0.3312    0.0266    0.1799-   0.0038
0.0618-   0.9786    0.1146    0.0092    0.0623-   0.0013
0.3312    0.1146    0.3853    0.0495-   0.3340    0.0071-
0.0266    0.0092    0.0495-   0.9960    0.0269    0.0006-

0.1799-   0.0623-   0.3340    0.0269    0.8186    0.0039
0.0038    0.0013    0.0071-   0.0006-   0.0039    0.9999

)1(P , 

and 
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

























=

0.3122    0.3336    0.3005-   0.1052    0.0294    0.0349-
0.3336    0.5882    0.0470-   0.2653    0.2355-   0.0538
0.3005-   0.0470-   0.6236    0.0821    0.3655-   0.0431

0.1052    0.2653    0.0821    0.1369    0.1717-   0.0231
0.0294    0.2355-   0.3655-   0.1717-   0.3556    0.0985

0.0349-   0.0538    0.0431    0.0231    0.0985    0.9835

)2(P . 

The eigenvectors corresponding to the eigenvalue 1 are 

T
1 0.1175]-   0.1254-   0.0143    0.0649-   0.1968    0.9630[=e  , and 

T
2 0.3463]-   0.7423-   0.0935-   0.3588-   0.3680    -0.2369[=e . 

These vectors also span the same space spanned by the optimal projection vectors computed 

before, since the projection matrix found by using these vectors is the same as optP  computed 

before, i.e., T
opt eeeeP ]][[ 2121= . 

 Now let )3(P  be the projection matrix of the range space of BS . We need to compute the 

following matrix to find the intersection of the null space of WS  and the range space of BS , 



























=+=Ψ

0.2451    0.1569    0.0833-   0.0909    0.0623    0.1507 
0.1569    0.5699    0.0736    0.2927    0.0025-   0.0888- 

0.0833-   0.0736    0.4020    0.1324    0.1011-   0.1110 
0.0909    0.2927    0.1324    0.1833    0.0068    0.0258 
0.0623    0.0025-   0.1011-   0.0068    0.2561    0.0966 
0.1507    0.0888-   0.1110    0.0258    0.0966    0.8436 

5.05.0~ )3()2( PP . 

There is no eigenvalue of Ψ~  that corresponds to 1. Thus, the intersection of )( WSN  and 

)( BSR  is trivial, which clearly indicates that the optimal projection vectors are not in this 

intersection. Hence the intersection of )( WSN  and )( BSR  alone cannot be used for 

recognition tasks. 
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 We can also compute the projection matrix of the optimal discriminant subspace directly 

with the following formula, 

)1()2()2()1( PPPPPopt ==  

since )1(P  and )2(P  commute. Thus, the optimal projection vectors that span the optimal 

discriminant subspace can also be obtained by the PCA+Null space Method. Note also that 

the projection matrix )2(P  of )( WSN  and )3(P  of )( BSR  do not commute, i.e., 

)2()3()3()2( PPPP ≠ . That is why the Direct-LDA Method does not extract features from the 

intersection of )( WSN  and )( BSR . 

 Now we can use the optimal projection vectors for dimension reduction. In this case, 

every sample in each class produces the same feature vector, called the discriminative 

common vector. In particular, 

TTT ,wx,wx,wx,wxΩ 0.0436]    -0.9094[][][ 2
1
21

1
22

1
11

1
11 =><><=><><= , 

TTT ,wx,wx,wx,wxΩ 3.5951]    0.1174[][][ 2
2
21

2
22

2
11

2
12 =><><=><><= , 

TTT ,wx,wx,wx,wxΩ 4.1549]-   0.0618[][][ 2
3
21

3
22

3
11

3
13 =><><=><><= . 

As a consequence a 100 % recognition rate is guaranteed for the vectors in the training set in 

the reduced 2-dimensional space. 

 

3.9 Experimental Results 

The Yale [7], AR [83], and ORL (Olivetti-Oracle Research Lab) face databases were used to 

test the recognition accuracy of the DCV Method. In addition to our proposed method, we 

also tested the PCA Method (also called the Eigenface Method for face recognition tasks), 

the PCA+FLDA Method (also called the Fisherface Method for face recognition tasks), and 
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the Direct-LDA Method. We did not test the PCA+Null Space Method since it has the same 

recognition accuracy as our method. 

 

3.9.1 Experiments with the Yale Face Database 

The Yale face database consists of images from 15=C  different people, using 11 images 

from each person, for a total of 165 images. The images contain variations with the following 

facial expressions or configurations: center-light, with glasses, happy, left-light, without 

glasses, normal, right-light, sad, sleepy, surprised and wink. For subjects numbered 2, 3, 6, 7, 

8, 9, 12 and 14, the normal facial expression and the without-glasses (or with glasses if 

subject normally wears glasses) images were copies of each other. Thus, we removed the 

image without glasses (or with glasses if subject normally wears glasses) from every subject 

in order to make all classes have an equal number of samples and so that all sample images 

were distinct. Thus, we had 10 samples per subject yielding a face database size of 150. We 

pre-processed these images by aligning and scaling them so that the distances between the 

eyes were the same for all images, and also ensuring that the eyes occurred in the same 

coordinates of the image. The resulting image was then cropped. The final image size was 

126x152. The recognition rates were computed by the “leave-one-out” strategy [39] since the 

training set size is relatively small. The nearest-neighbor algorithm was employed using the 

Euclidean distance for classification. For the PCA Method, the most significant eigenvectors 

were chosen such that corresponding eigenvalues contained 95 % of the total energy. For the 

PCA+FLDA Method, all images were first projected onto a (M-C=134)-dimensional space, 

where WS  was nonsingular. The results for the Yale Database are given in Table 3.1. As can 

be seen in table, the DCV Method achieved the highest recognition rate. 
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TABLE 3.1 
Recognition Rates for the Yale Face Database 

Methods Recognition Rates 

PCA 76% 

PCA+FLDA 96% 

Direct-LDA 92% 

Discriminative Common Vector 97.33% 
 

 

3.9.2 Experiments with the AR Face Database 

The AR face database includes 26 frontal images with different facial expressions, 

illumination conditions, and occlusions for 126 subjects. Images were recorded in two 

different sessions 14 days apart. Thirteen images were recorded under controlled 

circumstances in each session. The size of the images in the database is 768x576 pixels, and 

each pixel is represented by 24 bits of RGB color values. 

 We randomly selected 50=C  individuals (30 males and 20 females) for the experiment. 

Only nonoccluded images ((a)-(g) and (n)-(t) as in Figure 3.4) were chosen for every subject. 

Thus, our face database size was 700 with 14 images per subject. Next, these images were 

converted to grayscale, aligned, scaled, localized and cropped using the same procedure 

described previously for the Yale face database experiment. The final size of the images was 

222x299. The training set consisted of 7=N  images randomly selected from each subject, 

and the rest of the images were used as the test set. Thus, a training set of 350=M  images 

and a test set of 350 images were created. A nearest-neighbor algorithm was employed using 

the Euclidean distance for classification. This process was repeated 4 times and the 

recognition rates were found by averaging the error rates of each run. The results are shown 

in Table 3.2. As can be seen in the table, the DCV Method achieved the lowest error rate on 

the AR face database. 
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Figure 3.4: Images of one subject from the AR face database. First 13 images (a)-(m) were taken in 
one session and the others (n)-(z) in another session. Only nonoccluded images (a)-(g) and (n)-(t) 
were used in our experiments. 

 
TABLE 3.2 

Recognition Rates for the AR Face Database 
Methods Recognition Rates 

PCA 79.14% 

PCA+FLDA 98.85% 

Direct-LDA 98.64% 

Discriminative Common Vector 99.35% 

 
 

 The success of the proposed method depends on the size of the null space of the within-

class scatter matrix, WS . When the size of the null space is small, recognition rates are 

expected to be poor, since there will not be sufficient space for obtaining the optimal 

projection vectors. This is also mentioned in [22]. To verify this effect, we performed 

experiments using the pre-processed AR face database images. We randomly selected 7 

images from each class for training and used the rest for testing. Thus, a training set of 350 

images and a test set of 350 images were created. To observe the decrease in performance 

due to a small null space, we would have to have a huge number of classes for a training set 
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with sample space size 222x299. Unfortunately, we had a very limited number of classes in 

the training set. Thus, we had to take the approach of decreasing the dimensionality of the 

sample space by sub-sampling the images. Based on empirical observations, a new sample 

space size was chosen by down-sampling the images to 24x18. Then, we gradually decreased 

the number of classes from 50 to 5. This procedure was repeated 8 times using randomly 

chosen subsets of the 50 classes, and recognition rates were found by averaging the rates of 

each run. The results are shown in Figure 3.5. As can be seen, the performance decreases as 

the dimension of the null space decreases. This suggests that the initial sample space 

reduction step given in [22] is likely to reduce the achievable performance. 

 

 

 

 

 
 
 
 
 

Figure 3.5: The recognition rates as functions of the number of classes for subsampled images. 
 
 
3.9.3 Experiments with the ORL Face Database 

The ORL face database contains 40=C  individuals with 10 images per person. The images 

are taken at different times with varying lighting conditions, facial expressions, and facial 

details. All individuals are in an upright, frontal position (with tolerance for some side 

movement). The size of the each image is 92x112 pixels. Some individuals from the ORL 

face database are shown in Figure 3.6.  
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Figure 3.6: Three sample sets from the ORL face database. 

 

We randomly selected 7,5,3=N  samples from each class for training, and the remaining 

)10( N−  samples of each class were used for testing. This process was repeated 20 times, 

and 20 different training and test sets were created. We did not apply any pre-processing to 

the images. The recognition rates for the experiment were found by averaging the recognition 

rates of each trial. The computed recognition rates on the ORL face database are given in 

Table 3.3. The best recognition was obtained by the DCV Method in all cases. The 

recognition performance of the DCV Method is especially superior to the other linear 

methods when 3=N  samples are used for training. As the number of training samples is 

increased, the difference between the recognition rates of the DCV Method and other linear 

methods decreases. 

 

TABLE 3.3 
Recognition Rates for the ORL Face Database 

Recognition Rates  Number of training 

samples in each class PCA PCA+FLDA Direct-LDA DCV 

3=N  86.82% 86.35% 85.48% 90.60% 

5=N  93.75% 92.10% 95.70% 95.95% 

7=N  96.29% 94.33% 97.58% 97.74% 
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3.9.4 Gray Level Adjustment for Discriminative Common Vectors 

Since we utilized the face image vectors in our experiments, it is possible to visualize the 

projection directions obtained by the linear methods (the eigenfaces, the fisherfaces, the 

projection vectors of the Direct-LDA, and the optimal projection vectors of the DCV). 

Furthermore, we can display the images of the reconstructed images by using these 

projection vectors. The depicted images of the projection directions and the reconstructed 

images may vary from person to person since a standard for the visualization of such images 

has not been established yet. Although the appearance of the projection directions found by 

the linear methods will not affect the performance of these methods at all, more meaningful 

images of projection directions may be helpful in understanding how these methods work. 

For instance, it has been observed that the first three significant eigenvectors model the 

illumination differences in face recognition problems with different illumination conditions. 

Thus, some researchers neglect these eigenvectors during classification since they do not 

carry any discriminative information. Here, we will propose a standard procedure for 

visualizing the common vectors obtained by the DCV Method. Since the final optimal 

projection vectors are obtained by applying PCA to the common vectors, each common 

vector represents the reconstructed images of the corresponding class by employing the 

optimal projection vectors. The depicted images of common vectors may help to understand 

which parts of face images carry the discriminatory information. 

The pixel values of the original images in gray scale vary between 0 and 255. When the 

image is projected to a lower-dimensional subspace, the pixel values of the projected images 

may become negative. It is not well understood how researchers handle the negative valued 

pixels in depicting or reconstructing the projected images. When a projected image is 
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displayed in a Matlab medium, the negative gray levels of the pixels in the projected image 

are taken as zero. Therefore, these images seem to be darker than their normal appearance 

since zero gray level of pixels corresponds to the black color in Matlab. Dark and/or unclear 

images do not affect the recognition results, but one can wonder about the somewhat real 

appearance of the reconstructed images and try to see their usefulness during the recognition 

process. One may use the absolute values of elements of the projection vectors in order to 

display the images of those vectors. If the common vectors are displayed in the same manner, 

the resulting images are mostly very dark and obscure the interesting details in the darker 

areas. Thus, in order to visualize the common vectors, we took the absolute value followed 

by the logarithm before displaying them. However, there is a better approach for visualizing 

the common vectors of the DCV Method. In the following paragraphs we describe the 

procedure for visualization of the common vectors. 

While reconstructing the images of the common vectors using Matlab, we have to work 

with positive gray levels. Usually these gray levels are between the integers 0 and 255. Since 

the algorithms given for the DCV Method may result in negative values for some of the gray 

levels of pixels in the common vectors, the reconstruction of the common vectors will not be 

meaningful due to the negative gray levels. Therefore, the best thing before obtaining the 

common vectors is to subtract an integer of 128 from the gray levels of each pixel in the 

images of all the persons in the database, that is,  

d
i
m

i
m xx '1 x 128~ −= , iNmCi ,...,1,,...,1 == ,                           (3.81) 

where the vector d
'1  includes all ones. After obtaining the common vectors from the new 

feature vectors, the integer 128 multiplied with d
'1  can be added to them so that they can be 

reconstructed using Matlab.  
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The absolute value of the pixel gray levels of the projected image in DCV may be larger 

than 128. This may cause an overflow problem for depicting projected images. The reason 

why some of the gray levels turn out to be larger than 128 is explained below. 

Suppose that the elements of a new feature vector i
mx~  are i

md
i
m

i
m xxx ~,...,~,~

21  and they 

represent the gray levels in each pixel. If the absolute value of each i
mjx~  ( dj ,...,1= ) is 

bounded by a positive number Є (Є=128), then the absolute value of i
mjx~  is less than or equal 

to Є, that is, ≤i
mjx~ Є, dj ,...,1= , for the whole picture elements. Then the norm of i

mx~  will be 

≤||~|| i
mx d Є, where the square root of d times Є is an upper bound of the norm. Then an 

upper bound for the norm of the common vector can be calculated easily by 

||~||           

,...,1,~,||||||

1

1

∑≤
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rwk
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x

Cixx ββ
                           (3.82) 

                                                           drwd )( −≤ Є. 

For example, for 2=d  and 1=rw  case, 2|||| ≤i
comx Є. This implies that some of the 

elements of the common vector may be larger than Є when absolute values are taken. 

Although this may or may not happen in practice at all, one must be careful in reconstructing 

the images projected onto the optimal projection vectors. We know that |||| i
comx  will become 

smaller as rw approaches d. In fact, when the indifference subspace disappears (becomes a 

null space when drw = ), then 0|||| =i
comx . Thus, our expectation for the elements of the 

common vectors is that they will approach zero values as the number of feature vectors 

(images) increases in the database. Therefore, only adding 128 to each element of the 

common vector may not be too meaningful for the reconstruction of the common vector 
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pictures. The reconstructed image of the common vector will have almost the gray level of 

128 in each of the pixels. This image would have no meaning.  

In order to improve the visualization of common vectors, the gray level of each pixel 

must be readjusted before the addition of 128. This is similar to the case of increasing or 

decreasing the contrast levels in the CRT tube. Each of elements in the common vector can 

be multiplied by Є/ζ, where ζ is the largest of the absolute values of the elements of a 

common vector. If Є is larger than ζ, the multiplication will increase the contrast level. If Є is 

smaller than ζ, it will decrease the contrast level. After this multiplication, 128 can be added 

to each element of the common vector. Therefore, the following three steps must be applied 

to visualize the common vector images: 

1. Before starting to compute the common vectors, the gray level of 128 must be 

subtracted from each element of the image vectors. 

2. After the common vectors are calculated, the contrast level of the image must be 

adjusted by multiplying the common vector by Є/ζ. 

3. The gray level of 128 must be added to each element of the common vector before it 

is reconstructed. 

 The eigenfaces and common vectors obtained from the Yale, AR, and ORL face 

databases are shown in Figure 3.7 and Figure 3.8, respectively. Figure 3.7 displays the 

absolute values of the elements of the eigenfaces in an image form. In Figure 3.8 we first 

display the images of common vectors by taking the absolute value followed by the 

logarithm. We also display them by using the procedure described above. Eigenfaces 

characterize the variations resulting from differences in lighting conditions, facial expression, 

and so on, between face images. Thus, using the most significant eigenfaces (i.e., the ones 
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corresponding to the largest eigenvalues) may not be the best choice from a discrimination 

point of view. In contrast, common vectors represent the invariant regions of faces. Thus, the 

eyes, nose, part of the forehead above the eye brows, and cheeks are dominant in common 

vectors.  

 

 

Figure 3.7: Most 10 significant eigenfaces obtained from the Yale, AR, and ORL face databases. The 
first row shows 10 significant eigenfaces obtained from one of the training sets of the AR face 
database, the second row shows 10 significant eigenfaces obtained from one of the training sets of the 
Yale face database, and the last row shows 10 significant eigenfaces obtained from one of the training 
sets of the ORL face database. 
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Figure 3.8: Some of the common vectors obtained from the Yale, AR, and ORL face databases. The 
first, second, and third rows show some individuals from the AR face database and their 
corresponding common vectors obtained by utilizing absolute values and the common vector 
visualization procedure, respectively. Similarly, the second three rows show some individuals from 
the Yale face database and their corresponding common vectors, and the last three rows show some 
individuals of the ORL face database and their corresponding common vectors. 
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3.10 Discussion 

Accuracy, training cost, execution speed, and storage requirements are some factors that may 

be used to judge a pattern recognition method. Here we discuss the differences of these 

factors among the methods considered in this chapter. 

 Experimental results show that the proposed method (as well as the PCA+Null Space 

Method) yielded the highest performance in terms of accuracy. The PCA Method typically 

yielded lower recognition rates. In particular, its recognition rate for the Yale face database 

was notably poor. The misclassified images for the PCA Method were typically images that 

were not taken under the standard ambient light conditions used for most of the data (i.e., 

illumination was center-light, left-light, or right-light). Given that projection directions found 

by the PCA Method are chosen for optimal reconstruction, this method is expected to work 

well when the testing samples of a subject are similar to the samples of the subject used for 

training as in the ORL face database. Since the leave-one-out method was used for testing 

and there was only one sample for these non-ambient light illumination conditions per class, 

these unusual illumination images behaved as data outliers (i.e., these images were far from 

the samples used for training) for the Yale face database. We would expect better results if 

there were more than one example with these illumination conditions. The other tested 

methods produced better results since projection directions minimizing the total within-class 

scatter were used. A significant part of the total within-class scatter was produced by the non-

ambient lighting cases in all of the classes. This variation due to lighting conditions appears 

to produce similar deviations from class mean across all classes. Thus, we believe the 

resulting projection reduces variation due to lighting in all classes, even classes in which 

such variation did not appear in the training set. 
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 The proposed method and the PCA+Null Space Method require the same storage space, 

which is the smallest of all the methods studied. We need to store at most (C-1) d-

dimensional projection vectors and C (C-1)-dimensional discriminative common vectors for 

comparison (In the PCA+Null Space Method it is not necessary to save all the training 

sample feature vectors, only the smaller set of discriminative common vectors, although this 

has not been reported in the literature.) Secondly, the Direct-LDA and the PCA+FLDA 

methods have the same storage requirements, which are higher than those of the proposed 

method and the PCA+Null Space Method. For these methods, we must save at most (C-1) d-

dimensional projection vectors and M (C-1)-dimensional sample feature vectors of the 

training set for comparison. Hence, the only difference among storage requirements of the 

four methods is the number of feature vectors saved for comparison (The difference is the 

need to store additional (M-C) (C-1)-dimensional vectors for the Direct-LDA and the 

PCA+FLDA methods.) If M is small and d is large, this difference is negligible. However, if 

M is increased, this difference will also increase and become significant. Finally, for n>C-1 

the PCA Method has the largest storage space requirements. Here n is the number of the 

chosen significant eigenvectors and has been chosen such that the corresponding 

eigenvectors contain 95% of the total energy in our experiments. It was found to be a 

minimum of 65 for the Yale face database, 108 for the AR face database, and 76 for the ORL 

face database. 

 Training cost is the number of computations required to find the optimal projection 

vectors and the sample feature vectors of the training set for comparison. We compare the 

training cost of the methods based on their computational complexities (number of flops). 

The Direct-LDA Method yields the highest efficiency in terms of computation complexity. 
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The next most efficient method is the proposed method, followed by the PCA Method, the 

PCA+FLDA Method and the PCA+Null Space Method. The computational comparison that 

is most interesting to us is between the PCA+Null Space Method and the proposed method, 

since these two methods yield the same accuracy, which is higher than the other methods. 

We estimated the computational complexities of these two algorithms and found PCA+Null 

Space to require approximately ))2
3

4(24( 23
3

2 MMMldM −++  flops and the proposed 

method required approximately )4)(2( 2 dMCCMd +−  flops. Here l represents the number 

of iterations required for convergence of the eigen-decomposition algorithm. As d (the 

sample space size) and M (the number of training samples) become large, the proposed 

method requires less than half of the computations as the PCA+Null Space Method. 

 Execution speed or testing time is the time that is required to classify a new test sample. 

To do this, a test sample must be projected onto the linear span of the projection vectors and 

compared to the sample feature vectors of the training set. Testing time determines the real-

time efficiency of a method. We also compare testing times based on computational 

complexities in this study. Our proposed method and the PCA+Null Space Method yield the 

highest efficiency in terms of computation. In these methods, a test image is projected onto 

(C-1) d-dimensional vectors and compared to the C (C-1)-dimensional vector set. The Direct-

LDA and PCA+FLDA methods follow them in cost. In these methods, a test image is 

projected onto (C-1) d-dimensional vectors and compared to M (C-1)-dimensional vectors. 

As a result, the only difference between the testing times of these four methods is the time 

that is spent on comparison. In the Direct-LDA and the PCA+FLDA methods, a projected 

test image must be compared to all sample feature vectors of the training set instead of being 

compared to only one representative for each class. Thus, as with the storage requirements, 
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when the number of samples M is increased, the difference between testing times of these 

methods will also increase and become significant. Finally, the PCA Method yields the 

maximum test time in the case n>C-1. 

 In summary, the proposed method becomes progressively more efficient, compared to the 

other methods, as the size of the sample space M is increased. In Table 3.4 we present the 

overall results of our comparisons. The top row of the table lists the four criteria on which the 

methods were compared. The left column of the table is a qualitative ranking of how each 

method performed, and the cells in the table contain methods with comparable performance. 

 

TABLE 3.4 
Comparisons of Performance Across Methods for n>C-1 

Performance 

Rank 
Accuracy Training Time Testing Time 

Storage 

Requirements 

1 
Discriminative 
Common Vector, 
PCA+Null Space 

Direct-LDA 
Discriminative 
Common Vector, 
PCA+Null Space 

Discriminative 
Common Vector, 
PCA+Null Space 

2 PCA+FLDA Discriminative 
Common Vector 

PCA+FLDA, 
Direct-LDA 

PCA+FLDA, 
Direct-LDA 

3 Direct-LDA PCA PCA PCA 

4 PCA PCA+FLDA   

5  PCA+Null Space   

 

3.11 Conclusion 

In this chapter we proposed a new method for addressing computational difficulties 

encountered in obtaining the optimal projection vectors in the optimal discriminant subspace. 

We showed that every sample in a given class produces the same unique common vector 

when they are projected onto the null space of WS . We also proposed an alternative 
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algorithm for obtaining common vectors based on the subspace methods and the Gram-

Schmidt orthogonalization procedure, which avoids handling large matrices and improves the 

stability of the computation. Using common vectors also leads to an increased computational 

efficiency in pattern recognition tasks in high-dimensional spaces. Optimal projection vectors 

are found by using the common vectors, and the discriminative common vectors are 

determined by projecting any sample from each class onto the span of optimal projection 

vectors. There is no loss of information content in our method in the sense that the method 

has 100% recognition rate for linearly independent training set data. Experimental results 

show that the proposed method is superior to other methods in terms of accuracy, real-time 

performance, storage requirements, and numerical stability. 
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CHAPTER IV 

 

NONLINEAR FEATURE EXTRACTION METHODS 

 

This chapter presents a general introduction to nonlinear feature extraction methods 

employing kernel functions. The kernel trick concept has been introduced here, and this trick 

is applied to the linear DCV Method to make it a nonlinear method. Then, a large scale 

comparison of linear and nonlinear feature extraction methods has been carried out and its 

results are examined. Finally, we draw our conclusions based on those experimental results at 

the end of the chapter. 

 

4.1 An Introduction to Kernel Feature Extraction Methods 

Sometimes linear methods may not provide sufficient nonlinear discriminant power for 

classification of linearly non-separable classes (e.g., exclusive-or problem). Thus, kernel 

methods have been proposed to overcome this limitation. The basic idea of these methods is 

first to transform the data samples into a higher-dimensional space ℑ  via nonlinear mapping 

(.)φ , and then apply the linear methods in this space. More formally, we apply the mapping 

ℑ→dR:φ , )(xx φa  to all the data samples. The motivation behind this process is to 

transform linearly non-separable data samples into a higher-dimensional space where the 

data samples are linearly separable as illustrated in Figure 4.1, which is adopted from [101]. 

Since the mapped space is nonlinearly related to the original sample space, nonlinear 

decision boundaries between classes can be obtained for classification. This approach seems 

to contradict the curse of dimensionality phenomenon since it increases the dimensionality of 
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the sample space for a fixed number of available training set samples. A satisfactory 

explanation for this dilemma lies in statistical learning theory. This theory tells us that 

learning in high-dimensional space can be simpler if one uses low complexity, i.e., a simple 

class of decision rules such as linear classifiers [89]. In other words, it is not the 

dimensionality but the complexity of the function that matters. 

In some recognition tasks we may have sufficient knowledge about the problem and can 

choose (.)φ  by hand. If the mapping is not too complex and ℑ  is not too high-dimensional, 

we can explicitly apply this mapping as happens in Radial Basis Networks or Boosting 

Algorithms. However, in most cases we may not have sufficient prior knowledge to design 

(.)φ , or the mapping of the data samples into a higher-dimensional space explicitly cannot be 

intractable. In such cases, we utilize kernel functions to circumvent these limitations. 

 

 

 

 

 

 

 

 

4.2 Kernel Functions and Feature Spaces Induced by Kernels 

Utilizing kernel functions allows us to compute the dot products of the mapped samples in 

the higher-dimensional space, ℑ . Therefore, we must first formulate the pattern recognition 

a 

b 

x 

y 

Fig 4.1: Kernel (nonlinear) mapping of 2-dimensiona data into 3-dimensional space by 
polynomial kernel function. 

z 
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methods in terms of dot products of the mapped samples. Then, we use kernel functions to 

compute dot products in ℑ  such that 

>=< )(),(),( yxyxk φφ ,                                                  (4.1) 

where >< .  represents the dot product. In this case, we do not need to carry out the mapping 

of (.)φ  explicitly, which makes the application of linear algorithms in higher-dimensional 

spaces feasible. Furthermore, this allows us to know only kernel function k, not the mapping 

(.)φ . As a result, any linear algorithm that only uses scalar products can be executed in ℑ  

via kernel functions using the data samples in the original sample space dℜ . This is also 

known as the kernel trick. 

 For example, in a polynomial case, the dot product of )(xφ  and )(yφ  can be found by the 

kernel function 

nyxyxk ),(),( ><= ,                                                   (4.2) 

where φ  maps any sample vector x in d-dimensional space to the vector )(xφ  whose entries 

are all possible n-th degree ordered products of the entries of x. Note that for small 

dimensional spaces and for small degrees n’s, this scalar product can be computed explicitly. 

However, if the dimensionality of the sample space or the degree is high, the computation of 

the scalar product explicitly becomes intractable since there exist  

)!1(!
)!1(

−
−+=

dn
ndd F                                                       (4.3) 

different monomials comprising a feature space ℑ  of dimensionality Fd . 

 In general, any kernel function corresponds to a dot product in some higher-dimensional 

space ℑ  if it satisfies the conditions given in the following propositions [101]. 

Proposition 4.1: If k is a continuous symmetric kernel of a positive integral operator K, i.e., 
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∫=
C

dxxfyxkyKf )(),())((                                              (4.4) 

with 

∫ ≥
CxC

dxdyyfxfyxk 0)()(),(                                               (4.5) 

for all )(2 CLf ∈  (C being a compact subset of dℜ ), it can be expanded in a uniformly 

convergent series (on CxC) in terms of eigenfunctions jψ  and positive eigenvalues jλ , 

)()(),(
1

yxyxk jj

Fd

j
j ψψλ∑

=
= ,                                            (4.6) 

where ∞≤Fd . 

Proposition 4.2: If k is a continuous kernel of a positive integral operator (conditions as in 

Proposition 4.1), one can construct a mapping φ  into a space where k acts a dot product, 

).,()(),( yxkyx >=< φφ  

 In practice, we are given a finite amount of data sample vectors. The following 

proposition explains how we can choose the kernel functions corresponding to dot products 

of the mapped samples for some real pattern recognition applications without analytically 

analyzing a given kernel. 

Proposition 4.3: Suppose the data sample vectors Mxx ,...,1  and the kernel k are such that the 

matrix 
Mj
MiijKK

,...,1
,...,1)(

=
==  is a positive semi-definite matrix, where each element of the matrix 

is defined as 

),( jiij xxkK = .                                                      (4.7) 

Then it is possible to construct a map (.)φ  into some high-dimensional space ℑ  such that 

>=< )(),(),( jiji xxxxk φφ .                                            (4.8) 
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Conversely, for a map (.)φ  into some high-dimensional space, ℑ , the matrix K is positive 

semi-definite. 

 

4.3 The Kernel Principal Component Analysis Method 

The basic idea of the Kernel PCA Method is first to map the data samples into a higher-

dimensional space ℑ  via nonlinear mapping, and then apply the linear PCA Method in this 

higher-dimensional space. Let )(),...,(),(),...,(),( 2
1

1
1

1
2

1
1

C
CNN xxxxx φφφφφ  represent the mapped 

samples in ℑ . The within-class scatter matrix Φ
WS  , the between-class scatter matrix Φ

BS , and 

the total scatter matrix Φ
TS  in ℑ  are given by, 
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1 1
Φ−ΦΦ−Φ=−−= ΦΦ

= =

Φ ∑ ∑ µφµφ ,                (4.9) 
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=

ΦΦΦ ∑ µµµµ ,                 (4.10) 

and 

ΦΦΦΦ

= =

Φ +=Φ−ΦΦ−Φ=−−=∑ ∑ BW
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MM
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m
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i
mT SSxxS )1)(1())()()((

1 1
µφµφ ,     (4.11) 

where Φµ  is the mean of all mapped samples, Φ
iµ  is the mean of mapped samples in the i-th 

class, and Φ  is the matrix whose columns are the mapped training set samples in ℑ . Here 

MxM
CGGdiagG ℜ∈= ]...[ 1  is a block diagonal matrix, and ii xNN

iG ℜ∈  is a matrix whose all 

entries are iN/1 ; MxC
CuudiagU ℜ∈= ]...[ 1  is a block diagonal matrix and 1xN

i
iu ℜ∈  is a 

vector whose entries are all iN/1 ; MxC
CllL ℜ∈= ]...[ 1  is matrix where 1Mx

il ℜ∈  is a vector 

whose all entries are MNi / ; MxM
M ℜ∈1  is a matrix whose all entries are M/1 .  

The principal components are computed by solving the eigenvalue problem, 
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wSw T
Φ=λ .                                                       (4.12) 

All eigenvectors w corresponding to the nonzero eigenvalues lie in the span of 
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If we multiply (4.12) with T
M )1( Φ−Φ  from left and substitute (4.13) in this equation, we 

obtain 

αλαααλ KKK ~~~ 2 =⇒= ,                                           (4.14) 

where MxM
MMMM KKKKK ℜ∈+−−= 1111~  and MxMK ℜ∈  is given by, 
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There are at most M-1 eigenvectors corresponding to nonzero eigenvalues of K~ . Since 

},...,{ 11 −Mww  must be an orthonormal set, the vectors jα  must be normalized such that, 

       1,~)1()1(, >=<==Φ−ΦΦ−Φ>=< jjjj
T

jjM
T

M
T

jjj Kww ααλαααα .         (4.16) 

Then we select the most significant n ( 11 −≤≤ Mn ) eigenvectors for feature extraction. A 

test sample feature vector is obtained by the equation ))(( Φ−=Ω µφ test
T

test xW , where W is 

the matrix of the projection vectors jw  ( ),...,1 nj = . In this case each element of testΩ  can be 

found by 

  )1111(1)(,)(, '''
MMtestMMtest

T
jMtestjtestj KKKKxwxw +−−>=Φ−>=<−< Φ αφµφ ,    (4.17) 

where 1'1 Mx
M ℜ∈  is a vector with all terms equal to M/1 , and 1Mx

testK ℜ∈  is a vector with 

entries 
iNm

Citest
i
m xx

,...,1
,...,1)(),(

=
=>< φφ . 
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 We do not need to map the samples into ℑ  explicitly if we use the kernel functions in 

(4.15). Therefore all calculations can be done using the data samples in the original sample 

space, dℜ . The extracted features are nonlinear in the original sample space since the 

mapped space is nonlinearly related to the original sample space. Thus, if we apply a linear 

classifier to the extracted features, we can get non-convex decision regions in the original 

sample space, which in turn may increase the flexibility and the accuracy of the linear 

classifiers. 

 In the PCA Method we can extract )1,min( −= Mdn  features. In the Kernel PCA 

Method, since the dimensionality Fd  of the mapped space is typically too large, we can 

extract at most M-1 features. Therefore, if the training set size is larger than the 

dimensionality of the sample space d, the number of the extracted features obtained by the 

Kernel PCA can exceed the original dimension of the sample space. The linear PCA and the 

Kernel PCA also differ from the reconstruction point of view. Although it is possible to 

reconstruct the training set samples by using all principal components in the linear PCA 

Method, this is not possible in the Kernel PCA case. 

 

4.4 The Kernel Linear Discriminant Analysis Methods 

The Kernel PCA Method is an unsupervised technique that aims to extract features for 

optimal reconstruction in the mapped space. Thus, the extracted features may not be optimal 

from the discrimination point of view. Therefore, discriminant analysis techniques utilizing 

kernels have been recently proposed [4], [86], [126]. Similar to the Kernel PCA, these 

methods also employ kernel functions to project data samples into a higher-dimensional 

space via a nonlinear kernel mapping, and then the Linear Discriminant Analysis (LDA) is 
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performed in this higher-dimensional space. However, the singularity problem of the 

matrices is encountered in these techniques. Two different approaches are adopted to solve 

this problem. Mika et al. use the original FLDA criterion in the nonlinearly mapped space; 

they solve the singularity problem by adding a small perturbation matrix which makes the 

singular matrix become nonsingular [86]. Yang et al. use the modified FLDA criterion 

instead of the original FLDA criterion in the mapped space [126]. They first project the data 

onto the range space of the total scatter matrix of mapped samples through Kernel PCA, and 

then they apply the LDA Method which maximizes the modified FLDA criterion in this 

reduced space. The first approach is called the Kernel Fisher’s Discriminant Analysis (Kernel 

FDA) Method, and the latter approach is called the Kernel PCA+LDA (KPCA+LDA) 

Method. 

 

4.4.1 The Kernel Fisher’s Discriminant Analysis Method 

This method aims to maximize the FLDA criterion 
||
||max)(

WSW
WSWWJ

W
T

B
T

optFLDA Φ

Φ
Φ =  in the 

mapped space ℑ . The projection vectors that maximize this criterion are obtained by solving 

the equation  

wSwS BW
ΦΦ =λ .                                                     (4.18) 

To compute the projection vectors, we must first formulate (4.18) in terms of dot products of 

mapped samples which we then replace with kernel functions. Similar to the Kernel PCA 

Method, we can write the projection vectors w as in (4.13). In equation (4.18), wSW
Φλ  term 

can be written as 

αλλ )1())(( M
T

W GGwS Φ−ΦΦ−ΦΦ−Φ=Φ .                            (4.19) 
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By multiplying (4.19) with T
M )1( Φ−Φ  from left we obtain, 

αλ T
WW KK ~~ ,                                                         (4.20) 

where KGKKGKK MMW 11~ +−−= . 

By following the same approach for wSB
Φ  term we get, 

αT
BBB

T
M KKwS ~~)1( =Φ−Φ Φ ,                                         (4.21) 

where ))(1(~ LUKK MB −−= . By combining equations (4.20) and (4.21) we obtain, 

ααλ T
BB

T
WW KKKK ~~~~ = .                                               (4.22) 

Thus, the original problem reduces to solving the following 

αα
ααα T

WW
T

T
BB

T
K
FLDA KK

KKJ ~~
~~

max)( = .                                        (4.23) 

However the matrix MxMT
WW KK ℜ∈~~  is rank deficient since its rank cannot be larger than M-

C. Therefore a small diagonal perturbation matrix ∆ is added to MxMT
WW KK ℜ∈~~  in order to 

make it nonsingular. Then, the vectors jα  are chosen as the eigenvectors that correspond to 

the nonzero eigenvalues of T
BB

T
WW KKKK ~~)~~( 1−∆+ . After jα ’s are computed, they are 

normalized as given in the previous section. Finally, the feature vectors are obtained by using 

equation (4.17). 

 

4.4.2 The Kernel PCA+LDA Method 

This method aims to maximize the modified FLDA criterion 

||/||max)( WSWWSWWJ T
T

B
T

optMFLDA
ΦΦΦ =  in the mapped space, ℑ . By following the same 
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steps given in Kernel Fisher’s Discriminant Analysis, this problem is converted to the solving 

the following problem 

αα
ααα

TT

T
BB

T
K
MFLDA KK

KKJ ~~
~~

max)( = .                                       (4.24) 

The matrix MxMTKK ℜ∈~~  is a singular matrix since its rank cannot be larger than M-1. To 

circumvent this problem, all training set samples are first projected onto the range space of 

Φ
TS  through the Kernel PCA where the new total scatter matrix is nonsingular. Then, the 

Linear Discriminant Analysis which maximizes the modified FLDA criterion is applied in 

this reduced space. Thus, the Kernel PCA+LDA Method is equal to applying the Kernel PCA 

Method followed by the Linear Discriminant Analysis [126].  

 

4.5 The Kernel Discriminative Common Vector Method 

Sometimes discriminative common vectors obtained by the linear DCV Method are not 

distinct in the original sample space. In such cases, one can map the original sample space to 

a higher-dimensional space where the new discriminative common vectors in the mapped 

space are distinct among themselves. This is because the mapping function, ℑ→dR:φ , can 

map two vectors that are linearly dependent in the original sample space onto two vectors 

that are linearly independent in ℑ . Note that the mapped space could have arbitrarily large, 

possibly infinite dimensionality, which turns out to be a perfect environment for the 

application of the DCV Method. Tsuda proved that if the kernel matrix K given in (4.15) is 

strictly positive definite, then all mapped samples are linearly independent [111]. Therefore, 

even though the data samples are linearly dependent in the original sample space, the 

distinctness of the discriminative common vectors is satisfied in ℑ  by choosing a kernel 
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function which makes K a positive definite matrix. Therefore, a 100% recognition accuracy 

rate can be obtained for linearly non-separable classes by applying the linear DCV Method in 

ℑ .  

In the transformed space, Φ
WS  is typically singular due to the high dimensionality of the 

mapped space. Thus, the optimal projection vectors that maximize the modified FLDA 

criterion are in the intersection of the null space N( Φ
WS ) of Φ

WS  and the range space )( Φ
TSR  of 

Φ
TS . Similar to the linear case, there are mainly two approaches to compute these optimal 

projection vectors. We can either first project the training set samples onto N( Φ
WS ) and then 

apply PCA, or we can first apply PCA to project the training set samples onto )( Φ
TSR  and 

then find an orthonormal basis for the new null space of the within-class scatter matrix of the 

transformed samples. However, the first approach is not feasible since the algorithms that 

follow this approach use the mapping function (.)φ  explicitly. Therefore, it is better to follow 

the second approach. The training set samples can be easily projected onto R( Φ
TS ) through 

the Kernel PCA. Then we can find the vectors that span the null space of the within-class 

scatter matrix of the transformed samples. After this operation, we obtain the discriminative 

common vectors that represent each class. The algorithm for this method can be summarized 

as follows: 

Step 1: Project the training set samples onto )( Φ
TSR  through the Kernel PCA. Let  

MxMT
MMMM UUKKKKK ℜ∈Λ=+−−= 1111~                          (4.25) 

where the diagonal elements of Λ  are nonzero and MxMK ℜ∈  is given in (4.15). There are at 

most M-1 nonzero eigenvalues. The matrix that transforms the training set samples onto 
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R( Φ
TS ) is 2/1)1( −ΛΦ−Φ UM . Then the new total and the within-scatter matrices in the 

reduced space will be 

Λ=ΛΛΛΛ=

ΛΦ−ΦΛΦ−Φ=
−−

−Φ−Φ

2/12/1

2/12/1

      
)1())1((~

UUUUUU
USUS

TTT
MT

T
MT                               (4.26) 

and 

,~~      

)1())1((~

2/12/1

2/12/1

−−

−Φ−Φ

ΛΛ=

ΛΦ−ΦΛΦ−Φ=

UKKU

USUS
T

WW
T

MW
T

MW                            (4.27) 

where ))(1(11~ GIKKKGKKGKK MMMW −−=+−−= . 

Step 2: Find vectors that span the null space of Φ
WS~ . This can be performed by an eigen-

decomposition. The normalized eigenvectors corresponding to the zero eigenvalues of Φ
WS~  

form an orthonormal basis for the null space of Φ
WS~ . Let V be a matrix whose columns are the 

computed eigenvectors corresponding to the zero eigenvalues such that, 

0~ =ΦVSV W
T .                                                       (4.28) 

Step 3 (optional): Remove the null space of VSV B
T Φ~ , if it exists and rotate the projection 

directions so that the new total and between-scatter matrices are diagonal (i.e., the scatter 

matrices of the feature vectors of the training set samples are uncorrelated). That is, 

TT
T

T
B

T LLVVVSVVSV Λ=Λ== ΦΦ ~~~ .                                (4.29) 

Then the final projection matrix W will be 

VLUW M
2/1)1( −ΛΦ−Φ= .                                           (4.30) 

There are at most C-1 projection vectors. The feature vector of a test sample is obtained 

by the equation  

))(( Φ−=Ω µφ test
T

test xW ,                                           (4.31) 
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where W is the matrix of the projection vectors jw . Then each element of the feature vector 

of the test sample can be obtained by 

)1111()(1)(,)(, ''2/1'
MMtestMMtest

T
Mtestjtestj KKKKVLPxwxw +−−Λ>=Φ−>=<−< −Φ φµφ , 

(4.32) 

where 1'1 Mx
M ℜ∈  is a vector with all terms equal to M/1 , and 1Mx

testK ℜ∈  is a vector with 

entries 
iNm

Citest
i
m xx

,...,1
,...,1)(),(

=
=>< φφ . The terms including K can be removed in (4.32) since they 

do not depend on the test vector. 

All mathematical properties of the linear DCV carry over to the Kernel DCV Method 

with the modifications which now apply to the mapped vectors, )( i
mxφ , 

iNmCi ,...,1  ,,...,1 == , in ℑ . After performing the feature extraction, all training set samples 

in each class usually produce a distinct discriminative common vector of that class. 

Therefore, similar to the linear DCV case, 100% recognition accuracy with respect to the 

training data is also guaranteed for this method. If, in practice, we cannot easily find kernel 

functions which guarantee the distinctness of the discriminative common vectors in ℑ , we 

can add new projection vectors from outside the optimal discriminant subspace as described 

previously in Chapter 3 of this study. However, in all our experience, it was very rare that 

any of the kernels ever exhibited this problem, and in particular the Gaussian kernels were 

never observed to have this problem. 

As we stated previously, the KPCA+LDA Method is equivalent to applying the Kernel 

PCA Method followed by the Linear Discriminant Analysis [126]. After this operation, we 

also obtain projection vectors that give rise to discriminative common vectors for classes. 

Therefore this method also guarantees a 100% recognition accuracy if the discriminative 
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common vectors are distinct in the mapped space. It should be noted that the discriminative 

common vectors obtained by the KPCA+LDA are different from the ones obtained by the 

proposed method since the projection vectors of the proposed method are orthonormal, i.e., 

ijj
T
i ww δ= . Additionally, the projection vectors are orthogonal with respect to Φ

TS  and Φ
BS  

if the optional step 3 is carried out in the Kernel DCV algorithm. More formally, 

Λ== ΦΦ ~WSWWSW B
T

T
T ,                                       (4.33) 

where Λ~  is the diagonal matrix given in (4.29). On the other hand, the projection vectors of 

the KPCA+LDA are not necessarily orthogonal. This property of the existence of such 

discriminative common vectors for the KPCA+LDA does not seem to have been noticed in 

the literature. Thus, the feature vector of a test sample must be compared only to the 

discriminative common vector of each class during classification, which makes the Kernel 

DCV and the KPCA+LDA methods practical for real-time applications. Note that these 

methods do not offer any advantages over other competing methods during the computation 

of the feature vectors of a test sample. Thus, if one uses a single representative prototype 

feature vector (e.g., mean of the feature vectors) for each class during classification of a 

kernel method, the real time performance of this method will be similar to the Kernel DCV 

and the KPCA+LDA methods. 

 

4.5.1 Comparison of the Linear DCV and Kernel DCV Methods 

Mapping samples to a higher-dimensional space via nonlinear mapping (.)φ  yields some 

advantages for the proposed method over the linear DCV Method. The differences between 

these two methods can be summarized as follows: 
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i) The DCV Method extracts linear features from the original sample space, and the 

dimension of the null space of the within-class scatter matrix must be large for good 

recognition rates. However, the Kernel DCV Method extracts features from an implicit 

higher-dimensional space. It is possible to extract nonlinear features since the mapped space 

is nonlinearly related to the original sample space. Also, one can obtain good recognition 

rates by the Kernel DCV Method even though the original null space of the within-class 

scatter matrix is small or trivial since the null space of the within-class scatter matrix in ℑ  is 

typically huge. Additionally, we have the flexibility of creating different nonlinear decision 

boundaries by simply changing the kernel functions. However, these improvements are 

achieved at the expense of more computations. 

ii) The DCV Method can be applied only to data sets with the small sample size problem 

(the data sets in which the dimensionality of the original sample space is larger than the rank 

of the within-class scatter matrix). However, this limitation does not apply to the proposed 

kernel method. We can apply the Kernel DCV to these data sets even if the number of the 

samples is larger than the dimensionality of the sample space because of the high 

dimensionality of the mapped space. 

 

4.6 Other Kernel Approaches for Pattern Recognition 

There are some other kernel methods that apply linear methods in the mapped space ℑ  such 

as the Kernel Direct-LDA Method [79] and the Support Vector Machines [26]. We will not 

examine these methods since studying all kernel methods is beyond the scope of this study. 
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4.7 Experimental Results 

All supervised linear and kernel feature extraction methods discussed so far can be classified 

in two groups. The methods in the first group (FLDA, Direct-LDA, and Kernel FDA) use the 

projection directions coming from )( WSR  or )( Φ
WSR  for feature extraction, i.e., the 

projection vectors satisfy 0≠WSW W
T  for linear methods and they satisfy 0≠ΦWSW W

T  for 

nonlinear methods. On the other hand, the projection vectors of the methods in the second 

group (DCV, PCA+Null Space, Kernel DCV, and KPCA+LDA) come from )( WSN  or 

)( Φ
WSN  and they satisfy 0=WSW W

T  or 0=ΦWSW W
T . As explained before, projection 

directions of the methods of the second category come from the optimal discriminant 

subspace, and under certain conditions all training set samples can be classified correctly by 

using these projection directions for feature extraction. However, the goal of a recognition 

method is not only to classify all training data themselves, but also to classify well the test 

data samples that are not used for training. In other words, we want the recognition method to 

generalize well. In our experiments, we first tested the generalization abilities of those 

methods coming from the two different general categories separately, and then we 

investigated whether the performance of the methods from the second category can be 

improved by adding some projection directions from )( WSR  or )( Φ
WSR . In addition to the 

supervised feature extraction methods, we also tested the unsupervised feature extraction 

methods, the PCA and the Kernel PCA, to give a better assessment of the recognition 

accuracy of the proposed kernel method. The nearest-neighbor (NN) and the nearest-mean 

(NM) algorithms were employed using the Euclidean distance for classification of feature 

extraction methods, except for the methods that employ the discriminative common vectors 

(DCV, Kernel DCV, and KPCA+LDA), in which case the feature vector of the test sample 
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was compared only to the discriminative common vectors by using the Euclidean distance for 

those methods. 

The dimensionality of the sample space and the size of the training set are two important 

factors that affect the recognition rates of the methods [59]. Therefore, experiments were 

performed on data sets from two different populations with different training set sizes and 

dimensionalities. We have selected two databases from the first population and one database 

from the second population. The size of the training set is larger than the dimensionality of 

the sample space for the databases from the first population, unlike the case of the second 

population. Therefore, WS  is nonsingular for the data sets from the first population and 

singular for the data set of the second population. In the first group of experiments, since WS  

is nonsingular, we cannot apply the linear DCV Method. However, it is possible to apply the 

Kernel DCV Method since, as we noted, the training set samples are first transformed into a 

higher-dimensional space for which Φ
WS  is singular. For the second group of experiments, the 

FLDA Method cannot be applied directly. Therefore, we applied the approach suggested by 

Swets and Weng in which the training set samples were first projected onto an M-C 

dimensional space through PCA, for which WS  is nonsingular [104]. Then, the FLDA 

Method was applied to the projected samples. For the linear PCA and the Kernel PCA 

methods, the most significant eigenvectors were chosen in such a way that the corresponding 

eigenvalues contain 95% of the total energy.  

An appropriate selection of kernel functions for special tasks is still an open problem 

since different kernel functions give rise to different constructions of the implicit feature 

space [94]. We have used polynomial kernels nyxyxk ),(),( ><= , with degrees 3,2=n  and 

the Gaussian kernel )/||||exp(),( 2 γyxyxk −−=  for all data sets. We have employed a 
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small set of randomly created training and test sets to compute the best Gaussian parameters, 

γ , for each database. We first computed the minimum and the maximum values of Gaussian 

parameters that produce acceptable recognition rates by globally searching over a wide range 

of the parameter space. Then, we linearly divided the interval determined by the minimum 

and the maximum values of parameters into subintervals and computed the recognition rates. 

Finally, we carried out a local search in the neighborhood of the Gaussian parameter that 

yielded to the best recognition rate and computed the final best Gaussian parameter. This 

process was repeated for every method.  

 

4.7.1 Experiments with Large Number of Training Samples 

In this group of experiments we tested the proposed algorithm with two databases. The first 

database is the well-known Fisher’s Iris database [36], and the second database is the digit 

data set consisting of handwritten numerals (0-9) extracted from a collection of utility maps 

[11]. The number of samples is larger than the dimensionality of the sample space for both 

databases.  

 

Experiments on the Fisher’s Iris Database 

The Iris flower database contains four measurements on 50 Iris specimens for each of three 

species: Iris setosa, Iris versicolor, and Iris virginica for a total of 150 samples in the 

database. It was reported that the first class is linearly separable from the other two classes 

and that the latter two are not linearly separable from each other. We first conducted 

experiments to visualize the extracted features. We applied the proposed method and the 

other feature extraction methods discussed in the paper to this database and plotted the 
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extracted features. The data samples were centered before the feature extraction. We used the 

Gaussian kernel with 7.0=γ  for all the kernel methods. For the linear PCA and the Kernel 

PCA methods, we chose the most significant two eigenvectors for feature extraction. The 

feature vectors obtained by the linear feature extraction algorithms are illustrated in Figure 

4.2, and the feature vectors obtained by the kernel methods are illustrated in Figure 4.3. As 

can be seen in the figures, all samples are separable for the supervised kernel methods 

whereas they are not separable for the linear methods and the Kernel PCA Method.  

 

 

Figure 4.2: Feature vectors obtained by the linear feature extraction methods. The lines represent the 
decision boundaries of nonseparable classes obtained by the nearest-mean classifiers. 
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Figure 4.3: Feature vectors obtained by the kernel feature extraction methods. The line represents the 
decision boundary of nonseparable classes obtained by the nearest-mean classifier. 

 
TABLE 4.1 

Recognition Rates of Methods on the Fisher’s Iris Database 
Recognition Rates (%) Methods & Gaussian 

Kernel Parameters NN NM 
PCA 96 90 
FLDA 96.67 98 
Direct-LDA 92.67 94 
Kernel PCA, =γ 0.9 96 96 

Kernel FDA, =γ 0.7 95.33 95.33 

KPCA+LDA, =γ 0.2 94.67 

Kernel DCV, =γ 0.1 96 
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In the second set of experiments, we tested the generalization performances of the 

methods by adopting the leave-one-out strategy [39]. The recognition rates and the Gaussian 

parameters, which were found by the search procedure described previously, are given in 

Table 4.1. Note that we used only the Gaussian kernel since the small sample size does not 

occur for the polynomial kernel functions. In this case, the Kernel DCV and the KPCA+LDA 

methods cannot be used for recognition. 

In terms of classification performance, the linear FLDA Method followed by the NM 

classifier achieves the best recognition rates among all methods for the Iris database. The 

proposed method achieves the best recognition rate among the kernel methods. Only the 

Kernel PCA Method shows an improvement over its linear counterpart.  

 

Experiments on the Digit Dataset of Handwritten Numerals 

This database includes 10=C  classes, each having 200 patterns. Sample patterns are 

available in the form of binary images. These characters are represented in terms of different 

feature sets. In our experiments we used only a subset of the original data set consisting of 76 

Fourier coefficients and 240 pixel averages.  

We have randomly chosen 100 samples from each class for training; the rest are used for 

testing. Thus, a training set of 1000=M  samples and a test set of 1000 samples were created 

for each database. This process was repeated 25 times, and 25 different training and test sets 

were created. The first 5 data sets were used for parameter selection and the rest were used 

for performance evaluation. Thus, the final recognition rates for the experiment were found 

by averaging these 20 rates obtained in each trial. The means and the standard deviations of 

computed recognition rates on these databases are given in Table 4.2 and Table 4.3. 
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As can be seen from Table 4.2, the best recognition rate among the linear methods was 

obtained by the PCA Method followed by the NN classifier for the Fourier Coefficients 

database. The proposed method using the Gaussian kernel achieved the highest recognition 

rate method over all methods. Although the Kernel PCA Method did not outperform the 

classical linear counterpart for the test sets, both the Kernel FDA and the KPCA+LDA 

methods outperformed the FLDA for all the kernel functions used here.  

 

TABLE 4.2  
Recognition Rates of Methods on the 76 Fourier Coefficients Database 

Recognition Rates (%) and Standard Deviations 
Linear Methods 

NN NM 
PCA 82.50, 02.1=σ  77.67, 94.0=σ  

FLDA 80.24, 81.0=σ  80.16, 83.0=σ  

Direct-LDA 81.12, 94.0=σ  79.47, 87.0=σ  

Recognition Rates (%) and Standard Deviations 
Polynomial kernel functions with different 

degrees 
n = 2 n = 3 

Gaussian kernel 
function 

Kernel Methods & 
Gaussian Kernel 

Parameters 

NN NM NN NM NN NM 
Kernel PCA,  

=γ 5.77e+7 
82.06, 

87.0=σ  
77.65,  

05.1=σ  
81.84 

87.0=σ
76.13, 

02.1=σ  
82.50 

02.1=σ  
77.67, 

94.0=σ

Kernel FDA 
=γ 0.46 

82.30, 
83.0=σ  

82.66,  
77.0=σ  

83.35, 
88.0=σ

83.77,  
91.0=σ  

84.60, 
95.0=σ

84.98,  
78.0=σ

KPCA+LDA 
=γ 0.38 

80.62, 07.1=σ  81.96, 95.0=σ  84.82, 85.0=σ  

Kernel DCV 
=γ 0.46 

82.35, 88.0=σ  82.84, 83.0=σ  85.01, 63.0=σ  
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TABLE 4.3 
Recognition Rates of Methods on the 240 Pixel Averages Database 

Recognition Rates (%) and Standard Deviations 
Linear Methods 

NN NM 
PCA 97.07, 47.0=σ  91.63, 72.0=σ  

FLDA 93.98, 69.0=σ  94.53, 65.0=σ  

Direct-LDA 95.85, 61.0=σ  93.17, 63.0=σ  

Recognition Rates (%) and Standard Deviations 
Polynomial kernel functions with different 

degrees 
n = 2 n = 3 

Gaussian kernel 
function 

Kernel Methods & 
Gaussian Kernel 

Parameters 

NN NM NN NM NN NM 
Kernel PCA,  

=γ 4.5e4 
96.95,  

39.0=σ  
91.88,  

56.0=σ   
96.57,  

47.0=σ  
91.61,  

54.0=σ    
97.05, 

43.0=σ  
91.74, 

72.0=σ  

Kernel FDA, 
=γ 1200 

97.83,  
34.0=σ  

97.83,  
34.0=σ   

98.04,  
36.0=σ  

98.04,  
36.0=σ  

98.15, 
30.0=σ  

98.08, 
34.0=σ  

KPCA+LDA, 
=γ 1200 

97.7, 41.0=σ  98.05, 32.0=σ  98.14, 31.0=σ  

Kernel DCV, 
=γ 1200 

98.01, 22.0=σ  98.10, 32.0=σ  98.16, 31.0=σ  

 

We also performed statistical significance tests to evaluate the differences between the 

recognition rates of the proposed method and the other competing methods from Table 4.2. 

This test is a null hypothesis statistical test. If the resulting significance is below the desired 

significance level, the null hypothesis is rejected and the performance difference between 

two methods is considered to be statistically significant. The details of the test can be found 

in the Appendix. The results of testing for significance (with significance level of 0.05) in the 

observed recognition rates are given in Table 4.4 for the Fourier Coefficients database. We 

compared only the proposed method to the other kernel methods and to the linear method 

that achieved the best recognition rate among the linear methods. In terms of recognition 

performance, the term 0 implies the two methods are statistically the same; 1 implies the 
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proposed method performs better; and -1 implies the proposed method is worse than the 

compared method in the table. The recognition rates obtained by using the Gaussian kernels 

were generally observed to be the best overall. With regard to the Gaussian kernels, the 

proposed method was found to be significantly better than the Kernel PCA and all linear 

methods with a significance level 0.05 since the PCA Method performed the best out of all 

linear methods on this database. 

Similar to the previous case, the best recognition rate among the linear methods was 

obtained by the PCA Method followed by the NN classifier for the Pixel Averages Database. 

The proposed method achieved the highest recognition rates in all cases. Both the Kernel 

FDA and the KPCA+LDA methods outperformed the FLDA Method whereas the Kernel 

PCA Method did not outperform the classical linear counterpart. Additionally, we performed 

statistical significance tests to evaluate the differences between the recognition rates of the 

proposed method and the other competing methods on the Pixel Averages database. The 

results of the significance test are given in Table 4.5. The results show that the proposed 

method significantly outperforms the Kernel PCA and all linear methods in all cases with a 

significance level of 0.05 on the Pixel Averages database. 

 

TABLE 4.4 
Statistical Significance Comparison of Recognition Performances on the Fourier Coefficients 

Database 
KDCV/KPCA KDCV/KFDA

Kernel Functions 
NN NM NN NM 

KDCV/KPCA+LDA KDCV/PCA

n = 2 0 1 0 0 1 0 

n = 3 1 1 0 -1 1 0 

GK 1 1 0 0 0 1 
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TABLE 4.5 
Statistical Significance Comparison of Recognition Performances on the Pixel Averages Database 

KDCV/KPCA KDCV/KFDA
Kernel Functions 

NN NM NN NM 
KDCV/KPCA+LDA KDCV/PCA

n = 2 1 1 0 0 1 1 

n = 3 1 1 0 0 0 1 

GK 1 1 0 0 0 1 

 

In general, the test results show that the proposed method generalizes well compared to 

other kernel approaches for data sets with large number of samples studied here since for 

both data sets, the proposed method achieves either competitive or the best recognition 

results. We also conducted some experiments to observe if the recognition performance of 

the Kernel DCV Method can be increased by incorporating some projection directions from 

outside the optimal discriminant subspace into the Kernel DCV framework. Only one 

randomly created training and test set were used for both data sets in these experiments. We 

used the Gaussian kernels, with the parameters as given in the tables, since these yielded the 

highest recognition rates. A variation of the PCA+Null Space Method from [129] was 

employed to add the projection directions coming from outside the optimal discriminant 

subspace. We split the new within-class scatter matrix, Φ
WS~  (the within-class scatter matrix of 

the samples obtained after the Kernel PCA process), into its null space 

},...,{)~( 1 trW spanSN ξξ +
Φ =  and orthogonal complement (i.e., range space) 

},...,{)~( 1 rW spanSR ξξ=Φ  (where r is the rank of Φ
WS~ , and )( Φ= TSrankt  is the dimension of 

the reduced space after Kernel PCA step). Subsequently, all the projection vectors 

maximizing the between-class scatter in the null space are chosen. These projection vectors 
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are from the optimal discriminant subspace and there are 9 of them. Then, beginning with 

these optimal projection vectors, we gradually added new projection vectors from the range 

space until we reached to the number of 998=t  projection vectors, and we computed the 

corresponding recognition rates. The results for the training and test sets are illustrated in 

Figure 4.4. As can be seen from the figure, adding new projection directions from outside the 

optimal discriminant subspace does not increase the performance; in fact the performance 

can be seen to degrade. Adding projection directions from outside the optimal discriminant 

subspace also degrades the real-time performance since the added projections no longer 

produce a unique discriminative common vector for each class. As a result, if one does not 

utilize a single representative prototype feature vector for each class during classification, the 

comparisons must be made over all feature vectors of the training set, rather than just over a 

much smaller number of discriminative common vectors, leading to an increase in the 

computational cost. 

 

 
Figure 4.4: Recognition rates as a function of projection vectors that are used for feature extraction. 
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4.7.2 Experiments with High-Dimensional Sample Spaces 

In this group of experiments, we used the ORL (Olivetti-Oracle Research Lab) face database. 

The ORL face database contains 40=C  individuals with 10 images per person. The images 

are taken at different times with varying lighting conditions, facial expressions, and facial 

details. All individuals are in an up-right, frontal position (with tolerance for some side 

movement). The size of the each image is 92x112 pixels. Some individuals from the ORL 

face database are shown in Figure 3.6.  

We randomly selected 7,5,3=N  samples from each class for training and the remaining 

)10( N−  samples of each class were used for testing. This process was repeated 25 times, 

and 25 different training and test sets were created. The first 5 data sets were used for 

parameter selection and the rest were used for performance evaluation. We did not apply any 

pre-processing to the images. The recognition rates for the experiment were found by 

averaging the recognition rates of each trial. The computed recognition rates and standard 

deviations for the linear and kernel methods are given in Table 4.6 and Table 4.7, 

respectively. The best recognition was obtained by the DCV Method among the linear 

methods in all cases. The recognition performance of the DCV Method is especially superior 

to the other linear methods when 3=N  samples are used for training. As the number of 

training samples is increased, the difference between the recognition rates of the DCV 

Method and other linear methods decreases. Similarly, the best recognition results among the 

kernel methods were obtained by the Kernel DCV Method for all cases.  
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TABLE 4.6 
Recognition Rates of Linear Methods on the ORL Face Database 

Recognition Rates (%) & Standard Deviations 

PCA FLDA Direct-LDA 

Number of 
training samples 
in each class NN NM NN NM NN NM 

DCV 

3=N  
86.82, 

99.2=σ  
84.78, 

04.3=σ  
86.35,

91.2=σ  
86.01,

57.3=σ  
85.48, 

11.3=σ  
84.85, 

58.2=σ  
90.60, 

58.2=σ  

5=N  
93.75, 

5.1=σ  
90.45, 

16.2=σ  
92.10, 

66.2=σ  
92.47, 

22.2=σ  
95.70,

37.1=σ  
95.00, 

61.1=σ  
95.95, 

60.1=σ  

7=N  
96.29, 

78.1=σ  
92.41, 

26.2=σ
94.33, 

38.2=σ  
94.79, 

24.2=σ  
97.58, 

45.1=σ  
97.29, 

70.1=σ  
97.74, 

38.1=σ  

 

Similar to the large sample size case, we also performed statistical significance tests to 

evaluate the differences between the recognition rates of the proposed method and the other 

competing methods for the ORL face database. The results are given in Table 4.8. Although 

the proposed method either matches or significantly outperforms the other kernel methods, it 

does not offer any improvement over the linear methods. In fact, it statistically performs 

worse than the linear DCV Method for the polynomial kernel with degree 3 for N = 3. This 

can be attributed to the nature of the face images in the database. The images of individuals 

are mostly in frontal position and the lighting conditions are similar. Therefore the face 

images in the database are linearly separable. In such cases, using higher order correlations 

via kernels may degrade the performance as in our case since the problem is close to linearly 

separable. 
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TABLE 4.7 
Recognition Rates of Kernel Methods on the ORL Face Database 

Recognition Rates (%) & Standard Deviations 

N
um

ber of 
training 
sam

ples 

K
ernel 

functions 

C
lassifier 

Kernel PCA 
e1206.1=γ  

Kernel FDA 
e718.3=γ  

KPCA+LDA  
e718.3=γ  

Kernel DCV  
e806.1=γ  

NN 
85.91,  

94.2=σ  
89.37, 

74.2=σ  
n = 2 

NM 
83.81,  

13.3=σ  
89.37, 

74.2=σ  

86.78, 
49.3=σ  

90.46, 
58.2=σ  

NN 
84.39, 

81.2=σ  
87.12, 

24.3=σ  
n = 3 

NM 
81.51,  

82.2=σ  
87.12, 

24.3=σ  

85.05, 
74.3=σ  

88.78, 
00.3=σ  

NN 
86.82,  

99.2=σ  
90.12, 

46.2=σ  

N = 3 

GK 
NM 

84.78, 
04.3=σ  

89.35, 
59.2=σ  

91.14, 
69.2=σ  

91.17, 
44.2=σ  

NN 
93.20, 

50.1=σ  
95.25, 

69.1=σ  
n = 2 

NM 
90.32,  

41.2=σ  
95.25, 

69.1=σ  

93.55, 
67.1=σ  

96.12, 
48.1=σ  

NN 
92.57, 

67.1=σ  
94.37, 

51.1=σ  
n = 3 

NM 
88.65,  

85.2=σ  
94.37, 

51.1=σ  

92.20, 
93.1=σ  

95.37, 
57.1=σ  

NN 
93.75,  

50.1=σ  
96.32, 

34.1=σ  

N = 5 

GK 
NM 

90.45,  
16.2=σ  

95.57, 
57.1=σ  

96.42, 
31.1=σ  

96.55, 
17.1=σ  

NN 
95.87, 

95.1=σ  
97.08, 

78.1=σ  
n = 2 

NM 
92.70, 

24.2=σ  
97.08, 

78.1=σ  

96.08, 
87.1=σ  

97.66, 
70.1=σ  

NN 
95.58, 

69.1=σ  
96.54, 

60.1=σ  
n = 3 

NM 
91.16, 

69.2=σ  
96.54, 

60.1=σ  

95.33, 
99.1=σ  

97.41, 
73.1=σ  

NN 
96.41, 

93.1=σ  
98.16, 

52.1=σ  

N = 7 

GK 
NM 

92.20, 
34.2=σ  

98.04, 
24.1=σ  

97.83, 
30.1=σ  

98.25, 
32.1=σ  
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TABLE 4.8 
Statistical Significance Comparison of Recognition Performances on the ORL Face Database 

KDCV/KPCA KDCV/KFDA 

N
um

ber of 
training 
sam

ples 

K
ernel 

functions NN NM NN NM 

KDCV/ 
KPCA+LDA KDCV/DCV 

n = 2 1 1 0 0 1 0 

n = 3 1 1 0 0 1 -1 N = 3 

GK 1 1 0 1 0 0 

n = 2 1 1 0 0 1 0 

n = 3 1 1 1 1 1 0 N = 5 

GK 1 1 0 1 0 0 

n = 2 1 1 0 0 1 0 

n = 3 1 1 0 0 1 0 N = 7 

GK 1 1 0 0 0 0 

 

 

 

Figure 4.5: Recognition rates as a function of projection vectors that are used for feature extraction. 
 

Finally, we carried out experiments in order to observe whether the performance of the 

DCV and the Kernel DCV methods can be increased by adding projection directions from 

outside the optimal discriminant subspace. The same procedure was followed as in the 

previous subsection. These experiments were performed on the data set using 5=N  samples 
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for training. The Gaussian kernel with parameter 8e06.1=γ  was used for the Kernel DCV 

Method. For both methods, starting with 39 optimal projection vectors, we gradually added 

new projection vectors from outside the optimal discriminant subspace until we reached the 

number 199=t  of projection vectors. The results are given in Figure 4.5. As can be seen, 

adding new projection vectors degraded the performance of the method similar to the large 

sample size case. 

In general, these results show that the proposed kernel method leads to a reliable input-

output mapping for the data sets with a high-dimensional space by using only a few training 

set samples. 

 

4.8 Discussion 

We have seen in the described experiments that when the dimension of the sample space was 

smaller than the size of the training set, the kernel methods typically produced better results 

than the linear methods. Although the Kernel PCA did not improve the classical PCA 

Method significantly, the supervised kernel approaches, the Kernel FDA and the 

KPCA+LDA methods, outperformed the FLDA Method significantly. In many cases the 

proposed method outperformed the other kernel methods. Unlike the results obtained for the 

data sets from the first population, there is not a significant difference between the 

recognition rates of the linear and the kernel methods for the face database since the face 

samples were linearly separable. The DCV Method outperformed all other linear methods in 

all cases. Similarly, the Kernel DCV Method outperformed all other kernel methods in all 

cases. The Kernel DCV Method may improve the recognition results of the linear DCV 

Method on different face databases having nonlinear and complex distributions. 
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 The recognition results of the kernel methods may be improved for different kernels that 

fulfill Mercer’s theorem. However, we did not attempt to find better kernels since our aim 

here was to compare the accuracy of the Kernel DCV Method with other kernel techniques. 

The test results show that the projection vectors coming from the optimal discriminant 

subspace are the best suited set of projection directions for feature extraction. Another 

advantage of the Kernel DCV Method is its real-time performance. The proposed method and 

the KPCA+LDA Method yield the highest real-time efficiency among the kernel methods. In 

these methods, after a test image is projected onto the (C-1) optimal projection vectors, the 

feature vector of the test sample is compared to C discriminative common vectors only, in 

sharp contrast to all other methods, where it must be compared to all training set feature 

vectors if the nearest neighbor algorithm is used. Thus, if we assume that each class has N 

samples and each kernel method uses (C-1) projection vectors for feature extraction, then the 

computational complexity of the other kernel approaches will be N  times greater than the 

computational complexity of the Kernel DCV and the KPCA+LDA methods. 

 

4.9 Conclusion 

In this chapter we proposed a new nonlinear method that uses kernel functions for 

recognition. The proposed method combines kernel-based methodologies with the optimal 

discriminant subspace concept and finds the projection vectors coming from the optimal 

discriminant subspace in the nonlinearly mapped higher-dimensional space. Under certain 

conditions, all training set samples in each class produce a distinct vector called the 

discriminative common vector representing that class. Thus a 100% recognition rate is 

guaranteed for the training set samples even though they are not linearly separable in the 
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original sample space. To assess the performance of the proposed method, we performed 

several tests. First, we compared the proposed method with the methods that use projection 

directions from outside the optimal discriminant subspace. The proposed method 

outperformed other kernel feature extraction methods in most of the cases. Then, we 

generated a new set of projection vectors by adding new projection vectors from outside the 

optimal discriminant subspace to the optimal projection vectors. We then used these new 

vectors for feature extraction. However, this process degraded the performance of the method 

presented. The results show that the generalization ability of the proposed method is 

comparable to all tested kernel approaches. Also the fact that the test sample feature vectors 

are compared only to the discriminative common vectors, as opposed to all training set 

sample feature vectors, makes the proposed method ideal for real-time applications. 
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CHAPTER V 

 

LINEAR AND NONLINEAR SUBSPACE CLASSIFIERS 

 

Most of the classifiers that carry out computations at full dimensionality may not deliver the 

advantages of high-dimensional sample spaces if there are insufficient training sample 

patterns. However, unlike other classifiers, subspace classifiers are shown to work well in 

recognition tasks with high-dimensional sample spaces. Most of the assumptions upon which 

the subspace classifiers are founded, hold in high-dimensional sample spaces. Therefore, this 

chapter is devoted to linear and nonlinear subspace classifier methods. In addition, based on 

our findings in Chapter 3, we propose a variation of a linear subspace classifier here. Then, 

this method is generalized to the nonlinear case by utilizing the kernel trick. Finally, we 

provide experimental results and our conclusions at the end of the chapter. 

 

5.1 An Introduction to the Linear Subspace Classifiers 

Subspaces were originally introduced for compression and optimal reconstruction of multi-

dimensional data. Watanabe et al. proposed the first subspace method of pattern recognition 

to classify and represent the multi-dimensional pattern vectors [117]. The motivation behind 

the introduction of subspace classifiers is that each class has its own set of representative 

features differing from those of the other classes [90]. Therefore, the most conspicuous 

features are extracted from each class by using the corresponding training samples in the 

hope that those features also carry the most important discriminatory information.  
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In subspace methods, it is assumed that each class corresponds to a lower-dimensional 

subspace of the original feature space. The subspaces representing classes are defined in 

terms of basis vectors that are linear combinations of the sample vectors of corresponding 

classes. For this reason, basis vectors spanning these subspaces must be computed first. 

Then, an unknown test sample vector is classified based on the length of the projections of 

that sample onto each of the subspaces or, alternatively, on the distances of the test vector 

from these subspaces. 

 

5.2 Bases and Decision Rules 

Suppose there are C classes denoted by )()2()1( ,...,, Cωωω  where the i-th class contains iN  

samples. Let di
mx ℜ∈  be the m-th sample of the i-th class. Let )()2()1( ,...,, CLLL  are the 

subspaces representing classes. Suppose each subspace is spanned by il  orthonormal basis 

vectors },...,{ 1
i
il

i ww  in dℜ . Let )(iW  be the matrix whose columns are the orthonormal basis 

vectors spanning )(iL , i.e., 

},|{
1

)( ℜ∈∑==
=

ζζ i
j

l

j
j

iii wxxL
i

.                                 (5.1) 

Then, the projection matrix (or orthogonal projection operator) dxdiP ℜ∈)(  of any subspace 

)(iL  can be computed by 

TiiTi
j

l

j

i
j

i WWwwP
i )()(

1

)( )( =∑=
=

.                                            (5.2) 

Thus, the projection matrix )(iP  of )(iL  is symmetric. Note also that although the basis is not 

unique for a subspace, the projection matrix )(iP  is unique and completely defines the 

subspace )(iL . If the projection matrix is given, the basis vectors can be found by an eigen-
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decomposition of the projection matrix. The eigenvectors corresponding to the eigenvalues of 

)(iP , which are equal to 1, form an orthonormal basis for )(iL .  

Projection matrices have two important properties. First, the projection of any d-

dimensional vector testx  onto )(iL  can be found by 

test
ii

test xPx )(ˆ = .                                                       (5.3) 

Second, the projection of any vector from )(iL  is equal to itself. Thus, if we combine these 

two characteristics, it implies that )(2)( ii PP = , which also means that )(iP  is idempotent. The 

projection matrix )(iP  of the orthogonal complement of )(iL (denoted by ⊥)(iL ) can be found 

by 

)( )()( ii PIP −= ,                                                       (5.4) 

where dxdI ℜ∈  is the identity matrix. Therefore, the projection of testx  onto ⊥)(iL  can be 

computed by 

test
ii

test xPIx )(~ )(−= ,                                                    (5.5) 

which implies that  

i
test

i
testtest xxx ~ˆ += .                                                      (5.6) 

The vector i
testx~  is also called the residual. Figure 5.1, which is adopted from [90], illustrates 

the projection of a 3-dimensional vector onto a 2-dimensional subspace. In addition, the 

projection matrices )(iP  and )(iP  of two orthogonal subspaces fulfill the condition 

0)()()()( == iiii PPPP .                                                   (5.7) 
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Figure 5.1: Projection i
testx̂  of testx  on )(iL  and the orthogonal residual i

testx~ . 

 

It is not practical to store and use the projection matrices explicitly for computations, 

especially if the number of the samples in each class is smaller than the dimensionality of the 

sample space d. Instead, we use the basis vectors for all computations. However, we will use 

projection matrices for the purposes of abbreviation. 

In subspace methods, a test sample is classified according to the following classification 

rule: 

If ijxPxxPx test
jT

testtest
iT

test ≠> ,)()( , then assign testx  to the class )(iω .               (5.8) 

Since )(iP  is idempotent we can rewrite test
iT

test xPx )(  as 

2)()()()( |||| test
i

test
iiT

testtest
iT

test xPxPPxxPx == .                                   (5.9) 

We know that test
i xP )(  is the orthogonal projection of testx  onto )(iL . Thus, the classification 

rule can also be written as 

If ijxPxP test
j

test
i ≠> ,|||||||| 2)(2)( , then assign testx  to the class )(iω .              (5.10) 
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In other words, we assign testx  to the class where the length of the projection of testx  is 

maximum. Thus, we need only compute the norm of the vector ||ˆ|| i
testx  for each class during 

classification. The squared norm can be computed more efficiently by using the basis vectors 

as follows: 

2)(2

1

2 ||||))((||ˆ|| test

Ti
test

Til

j

i
j

i
test xWxwx =∑=

=
.                                (5.11) 

Then the classification rule becomes 

if ijxWxW test
Tj

test
Ti ≠> ,|||||||| 2)(2)( , then assign testx  to the class )(iω ,           (5.12) 

or 

if ijxx i
test

i
test ≠> ,||ˆ||||ˆ|| 22 , then assign testx  to the class )(iω .                   (5.13) 

Since i
testx̂  and i

testx~  are orthogonal we can alternatively use the following decision rule, 

if ijxx i
test

i
test ≠< ,||~||||~|| 22 , then assign testx  to the class )(iω .                   (5.14) 

All these decision rules show that the length of the input vector testx  does not contribute to 

the classification decision which implies that the subspace classifier is invariant to the input 

vector length. Therefore, without a loss of generality, we can set the norms of pattern vectors 

to 1 by normalization before classification.  

 

5.3 The Class Featuring Information Compression (CLAFIC) Method 

The CLAFIC Method was first proposed by Watanabe et al. for classification of multi-

dimensional data [117]. It aims to maximize the ratio 

     i

l

j

iTi
j

TC

i

iiC

i

T ljCixwxExxPxE
i

,...,1,,...,1),|))((()|(
1

)(2

1

)()(

1
==∑ ∈∑=∈∑

===
ωω ,    (5.15) 
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subject to 1|||| =i
jw , where (.)E  represents the expectation operator. This method employs 

the PCA or the Karhunen-Loeve transform to compute the basis vectors },...,{ 1
i
il

i ww  spanning 

the subspaces )(iL . The basis vectors are computed through eigen-decomposition of class 

correlation matrices iR  defined as 

CiXX
N

xx
N

R
Ti ii

i

Ti
m

N

m

i
m

i
i ,...,1,1)(1 )()(

1
==∑=

=
,                     (5.16) 

where )(iX  is the matrix whose columns are the samples of the i-th class. Note that the mean 

vectors iµ  of classes are not subtracted from the data samples. The matrix iR  is a positive 

semi-definite matrix; hence, all the eigenvalues are larger than or equal to 0. The il  

eigenvectors corresponding to the largest eigenvalues of iR  are chosen as basis vectors. 

There are various strategies for choosing the subspace dimensions il . One way is to set all 

the il s to be equal to a fixed value l. Then, the optimal value of l can be chosen from the 

error curves [71]. The second way employs eigenvalues for choosing the dimensions of 

subspaces. Let the eigenvalues of iR  be ordered as 0...21 >≥≥≥ i
r

ii
i

λλλ , where ir  is the 

rank of the matrix iR . The dimension of )(iL  is selected as the value by which the ratio of 

cumulative sums ∑∑=
==

ii r

j

i
j

l

j

i
j

11
/ λλκ  exceeds a threshold. Typical values of the threshold lie 

between .19.0 ≤≤ κ  

 The algorithm of the CLAFIC Method for high dimensional databases with the small 

sample size problem can be summarized as follows: 
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Step 1: For each class, compute the nonzero eigenvalues and corresponding eigenvectors of 

dxd
iR ℜ∈  by using the smaller matrix, ii xNNiTi XX ℜ∈)()( , where 

Tii

i
i XX

N
R )()(1= . There 

are at most iN  nonzero eigenvalues for each class. 

Step 2: Select the most significant il  eigenvectors by employing one of the procedures 

described above and form the matrices 

.,...,1],...[ 21
)( CiwwwW i

l
iii

i
==                               (5.17) 

The columns of each matrix )(iW  form a basis for the corresponding class. 

Step 3: To classify a test sample, testx  compute the squared norms of vectors 

2)(2 ||||||ˆ|| test
Tii

test xWx =  for each class and assign the test sample to the class which gives the 

maximum value. 

Iijima et al. introduced a variation of the CLAFIC known as the Multiple Similarity 

Method (MSM) in which individual weights were used for all basis vectors during the 

computation of the squared norms of the projected vectors [56]. Each basis vector was 

weighted by its corresponding eigenvalues as follows: 

Cixwx test
Til

j

i
ji

i
ji

test ,...,1,))((||ˆ|| 2

1 1

2 =∑=
= λ
λ

.                                (5.18) 

Wold used the so-called SIMCA Method which uses linear regression models for the 

representation of classes [121]. 

All these methods can easily be applied to high-dimensional databases with the small 

sample size problem since the eigenvalues and corresponding eigenvectors can be computed 

by using smaller matrices. However, the following methods discussed below are not suitable 

for databases with high-dimensional sample spaces. 
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5.4 Other Subspace Classifier Methods 

The methods CLAFIC, MSM, and SIMCA discussed above, each has one serious drawback 

[71], [90]. They optimize problematic criterion functions which lead to representation of each 

class independently of the other classes. Therefore these methods do not necessarily find the 

optimal solution for the classification of data samples. In order to solve this problem, the 

following criterion was proposed 

CixxPExxPxE iiiiC

ij
j

T ,...,1),|()|(  min )()()()(

1
=∈−∈∑

≠
=

ωω .                (5.19) 

This criterion function is optimized if the eigenvectors corresponding to the smallest 

eigenvalues of i

C

ij
j

j RR −∑
≠
=1

 are chosen as the basis vectors for )(iL  [90]. However, this method 

could not improve the recognition rates significantly compared to the CLAFIC Method. 

Fukunaga and Koontz proposed a new method known as the Generalized Fukunaga-Koontz 

Method for the two-class problem, which enabled the selection of the basis vectors in such a 

way that the projections onto the so-called rival subspaces are minimized [40]. It was 

generalized to the multi-class case by Kittler [67]. This method suggests choosing the 

eigenvectors corresponding to the largest eigenvalues of the generating matrix 

CiRIR
C

ij
j

ji
i ,...,1,)(

1

)( =∑ −+=Ψ
≠
=

                                       (5.20) 

for the basis vectors of the subspace )(iL . 

In general the CLAFIC Method may produce overlapping and non-orthogonal subspaces. 

This is problematic since the discrimination between classes weakens if the subspace 

dimensions are small. On the other hand, if we increase the subspace dimensions the 

classification decisions may be dominated by the less robust directions. This problem can be 
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avoided by removing the intersections of subspaces and orthogonalizing the remaining 

subspaces. Watanabe et al. introduced the Method of Orthogonal Subspaces (MOSS) to 

accomplish this task [118]. Orthogonalization process can be accomplished by employing 

Observation 3.1 such that the basis vectors of each class are chosen as the eigenvectors 

corresponding to the eigenvalues of 1 of the following matrix 

CiPIaPa
C

ij
j

j
j

i
i

i ,...,1),(
1

)()()( =∑ −+=Ψ
≠
=

,                              (5.21) 

where 1
1

=∑
=

C

i
ia . 

Lastly, iterative learning subspace methods, capable of learning in a decision fashion 

have been proposed [69], [70]. These methods modify the basis vectors of classes in order to 

diminish the number of misclassifications during the training phase. It was reported that they 

produce better recognition results compared to other subspace classifiers. However, all these 

methods discussed above are not applicable to high-dimensional databases with the small 

sample size problem. In particular, they require the use of large class correlation matrices or 

class projection matrices explicitly, and the smaller matrices to compute the basis vectors as 

in CLAFIC cannot be used. 

 

5.5 The Common Vector Method 

Linear subspace methods are based on the assumption that the most representative features of 

each class carry the most discriminatory information for discrimination; hence, these 

methods typically try to optimize criterion functions that may not be compatible with 

classification purposes. Therefore, Gulmezoglu et al. proposed the Common Vector (CV) 

Method using a different criterion for classification tasks where the number of samples in 
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each class is smaller than or equal to the dimensionality of the sample space [44], [45]. The 

CV Method aims to extract features that are common for all samples in each class. In order to 

accomplish its goal, the method eliminates features that are in the direction of the 

eigenvectors corresponding to the nonzero eigenvalues of the covariance matrices (or scatter 

matrices) of classes. It has been demonstrated that these features also carry the most 

discriminatory information for classification of samples. The CV Method has been 

successfully applied to isolated word and face recognition problems [13], [45]. 

 The scatter matrix of each class is defined as 
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i
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ii
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i
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where iµ  is the mean of the samples in the i-th class and idxN
iA ℜ∈  is given by 

] )-( ... )[( i1 1
µµ i

Ni
i

i xxA −= .                                      (5.23) 

Each sample in the training set is represented as, 

i
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i
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i
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i
m xxx ε++= , ,    iNmCi ,...,1,,...,1 == ,                   (5.24) 

where i
comx  is a unique vector representing the i-th class, and i

mε  is the error vector term. The 

CV Method aims to minimize the criterion given below for each class, 
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It was shown that if the common vector i
comx  is chosen as 

i
difm

i
m

i
com xxx ,−= ,     iNmCi ,...,1,,...,1 == ,                       (5.26) 

then iF  is minimized such that 0=iF , where i
difmx ,  represents the projection of i

mx  onto the 

range space of the scatter matrix of the i-th class [45]. This projection can be computed by 
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i
m

ii
difm xPx )(

, = ,    iNmCi ,...,1,,...,1 == ,                              (5.27) 

where )(iP  is the orthogonal projection operator of the range space of iS . Thus, equation 

(5.26) can also be written as, 

CixPxPIx i
m

ii
m

ii
com ,...,1,)( )()( ==−= .                             (5.28) 

As can be seen in equations (5.26) and (5.28), i
comx  is unique for each class and does not 

depend on the choice of the sample vector (i.e., i
comx  is independent of the sample index m) 

[45]. Since the projection of i
mx  onto the range space )( iSR  of iS  is removed in order to 

compute the common vectors, each common vector, i
comx , is a linear combination of the 

eigenvectors corresponding to the zero eigenvalues of iS . That is, the CV Method employs 

the directions coming from the null space )( iSN  of iS  for representation of each class. 

To recognize a test sample testx , the test sample is first projected onto the null space of the 

scatter matrix of each class separately; then, the projected vector is compared to the common 

vector of each class using the Euclidean distance. The unknown test sample is assigned to the 

class which gives the minimum distance. 

The method described above can be summarized as follows: 

Step 1: Compute the nonzero eigenvalues and the corresponding eigenvectors of the scatter 

matrix iS  of each class using the matrix ii xNN
i

T
i AA ℜ∈ , where dxdT

iii AAS ℜ∈= , and iA  is 

given by (5.23). Normalize the computed eigenvectors and set ]...[ 1
)( i

r
ii

i
uuU = , where 

ir  is the rank of iS . 

Step 2: Project any sample from each class onto the null space of iS  and compute the 

common vector of each class by, 
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com xUUxxPxx )()()( −=−= ,    iNmCi ,...,1,,...,1 ==             (5.29) 

Note that common vectors i
comx , Ci ,...,1= , are unique for each class and independent of the 

sample index m. 

Step 3: Project a test sample onto the null spaces of iS  to obtain the feature vectors by 

test
i

test
i
test xPx )(−=Ω , Ci ,...,1= .                                       (5.30) 

Compute the Euclidean distance between the test sample feature vector and the common 

vector of each class by, 

|||| i
com

i
testi x−Ω=κ , Ci ,...,1= .                                        (5.31) 

Assign the test sample to the class which produces the minimum distance. 

 

5.5.1 Computing Common Vectors by Using the Difference Subspace and the Gram-
Schmidt Orthogonalization Procedure 

The algorithm described above uses the eigenvectors of the scatter matrices of classes to 

compute an orthonormal basis for )( iSR . There are more efficient ways to compute an 

orthonormal basis for each class using the Gram-Schmidt orthogonalization procedure as 

described below. 

To compute common vectors, we first choose any of the sample vectors from each class 

as the subtrahend vector and then compute the difference vectors i
jb  ( 1,...,1 −= iNj ). Then, 

assuming that the first sample of each class is taken as the subtrahend vector, we have 

ii
j

i
j xxb 11 −= + ,  .1,...,1  ,,...,1 −== iNjCi                                (5.32) 

Each subspace, which is spanned by these difference vectors, is called the difference 

subspace of the corresponding class, and it is represented by iB . From Theorem 3.3, we 



 124

know that the difference subspace iB  and )( iSR  are same, i.e., )( ii SRB = . As described 

previously, assuming that the difference vectors are linearly independent, the orthogonal 

projection operator of spaces iB  and )( iSR  can be computed by, 

CiDDDDP TiiTiii ,...,1,)( )(1)()()()( == − ,                               (5.33) 

where ]...[ 121
)( i

N
iii

i
bbbD −= . However, the direct computation of the projection 

matrix is not practical since the size of the projection matrix is very large for high-

dimensional sample spaces. However, we can compute projections efficiently by using the 

basis vectors. Therefore, linearly independent difference vectors are orthonormalized by 

using the Gram-Schmidt orthogonalization procedure to obtain an orthonormal basis for each 

class. Let ]...[~
121

)( i
N

iii
i

U −= βββ  be the matrix whose columns are the computed 

orthonormal basis vectors after applying the Gram-Schmidt orthogonalization procedure. 

Then, the common vector of each class can be obtained using the formula, 

i
i
m

Tiii
m

i
com NmCixUUxx ,...,1     ,,...,1,~~ )()( ==−= .                     (5.34) 

The common vectors obtained through this procedure are the same as those obtained by using 

the eigenvectors of scatter matrices since the projection matrices satisfy the relation 

.,...,1,~~ )()()()()( CiUUUUP TiiTiii ===                                (5.35) 

The algorithm described above can be summarized as follows: 

Step 1: Find the linearly independent vectors i
jb  that span the difference subspace iB , and 

set },....,{ 1
i
r

i
i i

bbspanB =  for each class. There are totally ir  linearly independent vectors for 

each class, where ir  is at most 1−iN . 
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Step 2: Apply the Gram-Schmidt orthogonalization procedure to obtain an orthonormal basis 

i
r

i
i

ββ ,....,1  for iB  and set ]....[~
1

)( i
r

ii
i

U ββ= . 

Step 3: Choose any sample from each class and project it onto iB  to obtain common vectors 

by using (5.34). 

Step 4: Project a test sample onto the null spaces of iS  to obtain the feature vectors by 

test
Tii

test
i
test xUUx )()( ~~−=Ω ,   Ci ,...,1= .                                (5.36) 

Compute the Euclidean distance between the test sample feature vector and the common 

vector of each class by, 

|||| i
com

i
testi x−Ω=κ ,   Ci ,...,1= .                                      (5.37) 

Assign the test sample to the class which produces the minimum distance. 

 

5.6 A Variation of the Common Vector Method 

In Lemma 3.1, we showed that the null space of the total scatter matrix of the pooled data 

does not contain any discriminative information for classification of data samples. Therefore, 

this subspace can be discarded from our consideration in the CV Method. Then, the new 

subspace representing each class will be defined as the intersection of the null space of that 

class’ scatter matrix and the range space of the scatter matrix of the pooled data. As shown in 

Theorem 5.1 below, the projection matrix of the null space )( iSN  of the scatter matrix of the 

i-th class and the projection matrix of the range space )( TSR  of the scatter matrix of the 

pooled data, commute in the sense that 

)()( ii PPPP = ,                                                      (5.38) 



 126

where )(iP  is the projection matrix of )( iSN , and P  is the projection matrix of )( TSR . 

Therefore, the projection matrix )(
int

iP  of the intersection )()( Ti SRSN ∩  for each class can be 

found as 

.,...,1,)()()(
int CiPPPPP iii ===                                      (5.39) 

Theorem 5.1: Let P  and )(iP  be the projection matrices of the subspaces )( TSR  and 

)( iSN , Ci ,...,1= , respectively. Then P  and )(iP  commute, i.e., 

.,...,1,)()( CiPPPP ii ==                                             (5.40) 

Proof: Let )()1(
TSRL =  and, for any fixed i, let )()2(

iSNL = . Clearly, )()1(
TSNL =⊥  and 

)()2(
iSRL =⊥ . By Lemma 3.3, 
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                                 (5.41) 

and, in particular, )()( iT SNSN ⊂ , which, together with the fact that )()( ii SRSN ⊥ , shows 

that 

)()( iT SRSN ⊥  or ⊥⊥ ⊥ )2()1( LL .                                        (5.42) 

The assertion of the theorem now follows from Lemma 3.2.                                                   ⁮ 

The basis vectors spanning each mentioned intersection space )(
int

iP  can be found by using 

an eigen-decomposition. More precisely, the eigenvectors corresponding to the eigenvalues 1 

of )(
int

iP  span the intersection subspaces representing the classes of interest. However, this 

approach is not always practical since the size of the projection matrices can be very large. 

On the other hand, since the projection matrices commute, we can first project the samples 

onto )( TSR  and then find the null spaces of the classes in the transformed space, so as to 
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compute basis vectors of the intersection subspaces. The algorithm that implements this idea 

can be summarized as follows: 

Step 1: Projection of the training set samples onto )( TSR : 

i) Compute the nonzero eigenvalues and corresponding eigenvectors ku  of TS  using the 

matrix MxM
T

T
T AA ℜ∈ , where dxdT

TTT AAS ℜ∈=  and TA  is given by (3.6). Set 

][ 1 ru...uU = , where r is the rank of TS . 

ii) Project the training set samples onto )( TSR  by 

)(~ µ−= i
m

Ti
m xUx , .,...,1,,...,1 iNmCi ==                             (5.43) 

Step 2: Finding the null spaces of classes in the transformed space: In the transformed 

space, the new scatter matrices of the classes will be 

.,...,1,~ CiUSUS i
T

i ==                                            (5.44) 

Apply eigen-decomposition to each covariance matrix, rxr
iS ℜ∈~ . Let i

kq  be the eigenvectors 

corresponding to the zero eigenvalues of iS~ . Set iii
in

qqQ ...[ 1
)( = ], where in  is the 

dimensionality of ).~( iSN  

Step 3: Computation of the final basis vectors of the intersection space )()( Ti SRSN ∩ : The 

final basis vectors spanning the intersection subspaces will be 

.,...,1,)()( CiUQW ii ==                                           (5.45) 

Note that the basis vectors span the intersection subspace )()( Ti SRSN ∩  and therefore the 

following holds: 

CiWWP Tiii ,...,1,)()()(
int == .                                       (5.46) 
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When the samples of each class are projected onto their corresponding intersection 

subspace, the feature vector Ti
n

i
m

ii
m

i
com i

wxwx ],....,[ 1 ><><=Ω  of each sample is the 

same for all samples in that class. These feature vectors are called the common vectors, as in 

the CV Method. To recognize a test sample, we compute the Euclidean distance between the 

test sample feature vector and the common vector of each class 

|||| i
com

i
testi Ω−Ω=κ , Ci ,...,1= .                                       (5.47) 

Then we assign the test sample to the class that minimizes this distance. This method 

produces the same results as in the CV Method; however, the training phase requires more 

computations compared to the CV Method. Although this method may not appear useful at 

first glance, this idea enables us to extend the common vector idea to the nonlinear case. In 

the following sections, we propose a new nonlinear method by incorporating the kernel trick 

into the procedure introduced here. 

 

5.7 An Introduction to the Nonlinear Subspace Classifiers 

As we discussed earlier, recognition performance of linear subspace classifiers may be 

degraded because of overlapping subspaces. The MOSS Method, which has been proposed to 

avoid this problem, reduces the dimensionality of the subspaces by removing the overlapping 

regions. However, the worst effects of overlapping subspaces can be avoided by increasing 

the dimensionality of the sample space as opposed to reducing it. The original sample space 

can be mapped nonlinearly to some higher-dimensional feature space by using the kernel 

trick explained in Chapter 4. Increasing the dimensionality of the sample space spreads the 

data over a greater volume. This process reduces the overlap between the subspaces and 

enhances the potential for discrimination. Since the transformed space is nonlinearly related 
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to the original sample space, these approaches assume samples of each class lie in a nonlinear 

subspace. 

The samples in a high-dimensional space with the small sample size problem are usually 

independent. Thus, the overlapping problem is not typical for the databases with high-

dimensional spaces. However, this problem occurs when the number of samples in the 

training set is larger than the dimensionality of the sample space. It has been reported that the 

recognition rates were significantly improved by using nonlinear subspace classifiers over 

the linear subspace classifiers [3], [110]. In the following sections, we examine these 

nonlinear subspace classifiers and propose a new nonlinear subspace classifier that applies 

the variation of the CV Method in the nonlinearly mapped space. 

 

5.8 The Kernel CLAFIC Method 

The Kernel CLAFIC Method was proposed by Tsuda [110] and Balachander [3] at the same 

time. The method employs the Kernel PCA Method for computing the subspaces that 

represent the classes. However, it uses the correlation matrix of the mapped samples as 

opposed to the Kernel PCA, which uses the scatter matrix of samples. The correlation matrix 

of each class in ℑ  can be expressed as 
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=

Φ φφ ,                     (5.48) 

where )(iΦ  is the matrix whose columns are the mapped samples of the i-th class in ℑ . The 

rank of each matrix is determined by the number of samples in each class. Since samples in 

the mapped space are typically linearly independent, the rank of each matrix Φ
iR  is iN .  

The algorithm for the Kernel CLAFIC Method can be summarized as follows: 
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Step 1: Find the eigenvalues and corresponding eigenvectors of each matrix ii xNNiK ℜ∈)( , 

which is defined as 

CixxkxxKK
ii NnNm

i
n

i
m

i
n

i
m

i
mn

iTii ,...,1,)),()(),(( ,...,1;,...,1
)()()( =>==<=ΦΦ= ==φφ .  (5.49) 

The matrix )(iK  is typically a full rank matrix; thus, all the eigenvalues are positive. 

Step 2: Choose the dimensionality il  of each subspace by using one of the procedures given 

previously. Form the matrix ]...[ 21
)( i

l
iii

i
uuuU =  whose columns are the most 

significant eigenvectors corresponding to the largest eigenvalues of )(iK . Let 

),...,,( 21
)( i

l
iii

i
diag λλλ=Λ  be a diagonal matrix whose diagonal elements are the largest 

eigenvalues of )(iK . 

Step 3: The final basis vectors spanning the subspaces will be the normalized eigenvectors 

such that 

2/1)()()()( )( −ΛΦ= iiii UW ,  Ci ,...,1= .                                 (5.50) 

In this case, the length of the projection of a new test sample testx  can be computed by 

2)(2/1)(2)( ||)()(||||)(|| i
test

Tii
test

Ti KUxW −Λ=φ , Ci ,...,1= ,                   (5.51) 

where 1xNi
test

iK ℜ∈  is a vector with entries 
iNmtest

i
m xx ,...,1)(),( =>< φφ . Then we assign the test 

sample to the class which gives the maximum value. 

 

5.9 The Kernel Common Vector Method 

This method consists of mapping the given training set samples to an implicit higher-

dimensional space ℑ  using a nonlinear kernel mapping and applying the variation of the 

linear CV Method in the transformed space. 
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Our aim is to find basis vectors for the intersection subspaces )()( ΦΦ ∩ Ti SRSN , for each 

class. Here, Φ
iS  represents the scatter matrix of the i-th class in ℑ . To find these basis 

vectors, we follow the steps given in the previous section: We first project all training 

samples onto )( Φ
TSR  and then find the null spaces of the classes in the transformed space. 

The projection of training set samples onto )( Φ
TSR  can be done easily by employing the 

Kernel PCA Method. The algorithm for the Kernel Common Vector (Kernel CV) Method 

can be summarized as follows: 

Step 1: Project the training set samples onto )( Φ
TSR  using the Kernel PCA. Let  

,1111~ MxMT
MMMM UUKKKKK ℜ∈Λ=+−−=                        (5.52) 

where the diagonal elements of Λ  are nonzero and MxMK ℜ∈  as in (4.15). The matrix that 

transforms the training set samples onto )( Φ
TSR is 2/1)1( −ΛΦ−Φ UM . The new scatter matrix 

rxr
iS ℜ∈Φ~  (r is the rank of )( Φ

TSR  and cannot be larger than M-1) of each class in the 

reduced space becomes 
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Here, the matrix iMxNiH ℜ∈)(~  is given by 
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where ii xNNiG ℜ∈)(  is a matrix whose elements are all 1/ iN , MxM
M ℜ∈1  is a matrix all of 

whose entries are 1/M, and the matrix iMxNiH ℜ∈)(  is given by 

iMxN
Cj

jiiTi HH ℜ∈=ΦΦ= = ,...,1
)()()( )( , where each matrix ij xNNjiH ℜ∈)(  is defined as  
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Step 2: For each class, find a basis of the null space of Φ
iS~ . This can be done by eigen-

decomposition. The normalized eigenvectors corresponding to the zero eigenvalues of Φ
iS~  

form an orthonormal basis for the null space of Φ
iS~ . Let )(iQ  be a matrix whose columns are 

the computed eigenvectors corresponding to the zero eigenvalues, such that 

.,...,1,0~ )()( CiQSQ i
i

Ti ==Φ                                         (5.57) 

Step 3: The basis vector matrix )(iW  whose columns span the intersection subspace of the i-

th class is 

.,...,1,)1( )(2/1)( CiQUW i
M

i =ΛΦ−Φ= −                              (5.58) 

The number of basis vectors spanning the intersection subspaces is determined by the 

dimensionality of )~( Φ
iSN  for each class. After performing feature extraction, all training set 

samples in each class give rise to the common vector of that class. Therefore, similarly to the 

linear CV case, a 100% recognition accuracy is also guaranteed with this method. Moreover, 

to recognize a given test sample, we compare the Euclidean distances between the common 

vectors and the feature vector of the test sample for each class using (5.43), and we assign the 

test sample to the class that minimizes the distance. 

 

5.10 Experimental Results 

Experimental studies performed in this chapter can be classified into two groups. In the first 

set of experiments, we compared the CV Method to the DCV Method in terms of recognition 

accuracy, training cost, storage requirements, and real-time performance. In the second set of 

experiments, we tested the recognition accuracies of the subspace classifiers. In all 
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experiments we used the ORL face database to test the proposed method. The ORL face 

database contains C = 40 individuals with 10 images per person. The images are taken at 

different time instances with slightly varying lighting conditions, facial expressions, and 

facial details. The size of each image is 92x112. Some individuals from the ORL face 

database are shown in Figure 3.2.  

 

5.10.1 Comparison of the CV and DCV Methods 

In these experiments, we first randomized the samples in the ORL face database and then 

selected 9,7,5,3=N  from each class for training; and the remaining )10( N−  samples of 

each class were used for testing. We did not apply any pre-processing to the images. Then 

recognition rates were computed. Euclidean distance was used to compute the distances 

between the sample feature vectors of test set and the common vectors for the CV Method; 

similarly, the same metric was used to compute the distances between the feature vectors of 

test samples and the discriminative common vectors. This process was repeated seven times, 

and the recognition rates were found by averaging the recognition rates of seven trials. The 

recognition rates for the test sets are given in Table 5.1. The recognition rates of training set 

are not given since they are 100% for both methods. 

Some of the common vectors obtained by the CV and the DCV methods are plotted in 

Figure 5.2. Figure 5.2 displays the absolute values of the common vectors obtained by the 

CV Method in image form. On the other hand, to display the common vectors obtained by 

the DCV Method, we took the logarithm of the values after taking the absolute values since 

common vectors displayed by taking only the absolute values were mostly dark.  
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Figure 5.2: Common vectors obtained by the CV and the DCV methods. The first row shows some 
individuals from the ORL face database and the second and the third rows show the corresponding 
common vectors obtained by the CV and the DCV methods, respectively. 
 

TABLE 5.1 
Recognition Rates of Methods on the ORL face database  

Methods Number of training samples 

in each class CV DCV 

3=N  88.82%, 73.3=σ  91.02%, 89.1=σ  

5=N  95.78%, 41.1=σ  96.92%, 30.1=σ  

7=N  97.97%, 16.1=σ  98.21%, 39.1=σ  

9=N  99.28%, 21.1=σ  99.28%, 21.1=σ  

 

Recognition accuracy, training cost, storage requirements, and real-time performance are 

some factors that may be used to evaluate a method. We discuss here the differences among 

these factors between the CV and the DCV methods. 

As can be seen in Table 5.1, the DCV Method tends to yield better results compared to 

the CV Method. The results reveal the important fact that there is a relationship between the 

number of training samples N in each class and the difference between the recognition rates 
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of the CV and the DCV methods. As the number of training set samples is increased, the 

difference between the recognition rates decreases and finally becomes zero in this example. 

These observations somewhat support the hypothesis that the variations among the face 

samples of each class are similar. Therefore, we can assume that the scatter matrices of each 

face class are identical, and that we can replace them with the within-class scatter matrix. A 

similar assumption is made in the Fisher’s Linear Discriminant Analysis approach. For this 

reason we obtained better results for the DCV Method in the case of having only a few 

training vectors in each class. As explained previously, the CV Method first models the 

variations in each class and removes them from the samples in order to obtain the common 

vectors. If this variation is modeled correctly, all samples are classified correctly. The low 

recognition rates of the CV Method for small numbers of training set samples show that the 

number of training samples in each class is not sufficient to obtain a good model of the 

variations. On the other hand, the DCV Method does a better job with a small number of 

training set samples since it makes use of all of the pattern samples from all classes and does 

not perform a separate analysis on each class by itself. Some of the variations emerging from 

the test samples of one class may be captured by the variations between the training set 

samples of one or more other classes. 

Training cost is the amount of computations required to find the projection vectors and 

the sample feature vectors of the training set samples. We compared the training cost of the 

methods based on their computational complexities (number of flops). The CV Method 

yields higher efficiency in terms of computation complexity since the DCV Method includes 

an additional step of applying PCA to the common vectors. 
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The DCV Method requires less storage space than the CV Method. If we assume that all 

training set sample vectors are linearly independent, then the CV Method requires us to store 

(M-C) d-dimensional projection vectors and C d-dimensional common vectors. However, we 

need only store (C-1) d-dimensional projection vectors and C (C-1)-dimensional 

discriminative common vectors for the DCV Method. Therefore, if we assume that each class 

has N samples, the storage space of the CV method is approximately N times the storage 

space of the DCV method. 

The real-time performance of a method is determined by the time that is required to 

classify a new test image. To do this, we need to compute the feature vector of the test 

sample and compare it to the feature vectors of the training set. We compared testing times 

based on computational complexities here. The DCV Method is more efficient than the CV 

Method in terms of testing time. For the CV Method, we had to project our test sample onto 

(M-C) d-dimensional vectors to obtain feature vectors and compute the distances between the 

d-dimensional common vector and the feature vectors. On the other hand, we had to project 

our test sample onto only (C-1) d-dimensional vectors to obtain the feature vector of the test 

sample and compare it to the C (C-1)-dimensional vectors. Assuming d>>(C-1), the 

difference between the testing times of the methods is determined by the number of 

computations required to project a test sample onto (M-2C+1) d-dimensional vectors. 

 

5.10.2 Testing Generalization Performance of Subspace Classifiers 

In this set of experiments we tested the generalization performances of the linear and 

nonlinear subspace classifiers. We have experimented with the polynomial kernel 

2),(),( ><= yxyxk  of degree 2 and the Gaussian kernel )/||||exp(),( 2 γyxyxk −−= , for 
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all data sets. The parameter γ  was chosen as 1.06e8, based on empirical observations. Beside 

the subspace classifier methods proposed in this chapter, we also tested the linear CLAFIC 

and the Kernel CLAFIC methods. Class correlation matrices were used for finding the basis 

vectors spanning the subspaces of classes for the CLAFIC and the Kernel CLAFIC methods. 

For both methods, the dimension of each subspace was determined by the rank of the 

corresponding correlation matrix since there are only a few training samples in each class. In 

particular, the dimension of each subspace was equal to the number of samples in each class. 

We randomly selected five samples from each class for training; the remaining samples were 

used for testing. We did not apply any pre-processing to the images. Then, recognition rates 

were computed, and this process was repeated five times. The recognition rates were found 

by averaging the recognition rates in each run. The computed recognition rates are shown in 

Table 5.2.  

 

TABLE 5.2 
Recognition Rates of Methods on the ORL Face Database 

Linear Methods Recognition Rates(%) & Standard Deviations 

CLAFIC 95.3, 68.1=σ  

Variation of CV 96, 58.1=σ  

Nonlinear Methods Polynomial Kernel Gaussian Kernel 

Kernel CLAFIC 95.3, 85.1=σ  95.9, 67.1=σ  

Kernel CV 96, 83.1=σ  95.8, 68.1=σ  

 

As can be seen from the results, although there is not a significant difference between the 

recognition rates, the variation of CV Method outperforms the CLAFIC Method and 

similarly, the Kernel CV Method outperforms the Kernel CLAFIC Method. However, the 

kernel methods do not offer any recognition improvements over the linear methods. This can 
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be attributed to the linear distribution of image classes. Since the problem is close to linearly 

separable, using nonlinear methods does not improve the recognition rates. However, the 

nonlinear subspace classifiers may improve the recognition accuracies of the linear subspace 

classifiers on different databases having nonlinear and complex distributions.  

 

5.11 Conclusion 

In this chapter we proposed a variation of a subspace classifier. Then, this method was 

generalized to the nonlinear case by employing kernel functions. The proposed methods 

employ the intersection subspace of the null space of a class’ covariance matrix and the range 

space of the covariance matrix of pooled data to represent each class. When the training set 

samples are projected onto these intersection subspaces, all training set samples in each class 

give rise to a unique vector, called the common vector. Thus, a 100% recognition rate is 

typically guaranteed for the training set samples. Then, we compared the proposed linear 

subspace classifier to the linear DCV Method. After comparing the CV and the DCV 

methods, we arrived at the following conclusions: 

i) The DCV Method is more efficient than the CV Method in terms of recognition 

accuracy, storage requirements, and real-time performance for face recognition tasks. 

However, the training cost of the CV Method is lower than the DCV Method. 

ii) The CV Method is expected to perform well if the variations among the test samples 

of a class are similar to the variations among the training samples of that class. 

iii) The DCV Method performs well if the variations among the samples of classes are 

similar. This enables us to classify the test samples more accurately even if they are 

not similar to the ones used for training. 
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These results show that the subspace classifiers are not suitable for all classification tasks. 

In particular, if there are a few samples in each class, the estimation of basis vectors spanning 

subspaces may not be reliable. In such cases, it is better to use the DCV Method. Also, the 

dimensionality of the sample space must be large enough to ensure that the pattern classes 

are distributed in a lower-dimensional subspace of the original sample space. 

We later compared the proposed subspace classifiers to other subspace classifiers. Our 

test results show that the generalization ability of the proposed method competes with the 

other subspace classifiers. Therefore, we conclude that the basis vectors, which span the 

intersection of the null space of a class’ covariance matrix and the range space of the 

covariance matrix of pooled data, carry important discriminatory information for 

classification. 
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APPENDIX A 

 

Statistical Significance Test Involving Differences of Means and Proportions 

Consider the two classes, 1X  and 2X  come from two populations having means, 1X , 2X  

and standard deviations 1σ , 2σ  obtained by 1N  and 2N  trials, respectively. Then, we have to 

decide between two hypotheses: 

     H0 : 21 µµ = , and the difference is merely due to chance. 

     H1 : 21 µµ ≠ , and there is a significant difference between classes. 

Under hypothesis H0, both classes come from the same population. The mean and standard 

deviation of the difference in means are given by, 

0
21
=−XXµ  and 2

2
21

2
1 //

21
NNXX σσσ +=− . 

Then,  

21
/)( 21 XXXXz −−= σ . 

For a two-tailed test, the results are significantly different at a 0.05 level if z lies outside the 

range -1.96 to 1.96. Hence, we conclude that the difference in performance of the two 

methods is significantly different if z lies outside the range -1.96 to 1.96 with a significance 

level of 0.05. 
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