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Abstract: Face recognition is an essential issue in modern-day applications since it can be used in many areas for

several purposes. Many methods have been proposed for face recognition. It is a difficult task since variations in

lighting, instantaneous mimic varieties, posing angles, and scaling differences can drastically change the appearance of

the face. To suppress these complications, effective feature extraction and proper alignment of face images gain as much

importance as the recognition method choice. In this paper, we provide an extensive comparison of the state-of-the-

art face recognition methods with the most well-known techniques used in feature representation. In order to test the

performances of these various methods, we created a new face database, named the ESOGU face database, which includes

frontal images of 100 people taken under different lighting and posing conditions. In addition to our new database, we

also present experiments on the well-known AR face database to obtain more general and reliable results. Moreover, we

investigate the automatic face detection and automatic normalization of the face images in the databases. Based on this,

we discuss the use of such automatic methods for face recognition applications.

Key words: Face recognition, feature extraction, face database, face detection, classification

1. Introduction

Recognizing faces in still and video images has enjoyed significant attention, especially during the past few

years [1–4]. One of the reasons for this trend is the wide range of applications of face recognition, including

military, commercial, and law enforcement applications. Another reason for the popularity of face recognition is

its nonintrusive and user-friendly nature. Recognizing people by using face images can be easily accomplished

without people’s cooperation or knowledge. On the other hand, recognizing people based on other biometrics

such as the iris or fingerprints is not suitable for noncollaborative individuals. That is why facial features scored

the highest compatibility among the 6 biometrics studied in [5]. Lastly, advances in related tasks such as face

detection and image representation increased the attention on face recognition.

Face recognition can be defined as the identification of individuals from still or video images of a scene

by using a stored database of faces labeled with people’s identities. It generally includes steps of localization

of face regions in a cluttered background, normalization of images, extraction of features from the face regions,

and, finally, recognition and verification. It is a difficult task as there are numerous factors such as 3D pose,

facial expression, hair style, beard, moustache, and makeup that affect the appearance of an individual’s facial

features [4]. In addition to these factors, lighting, background, scale changes, noise, and occlusion make the

problem even harder.
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Face detection is the first step in any face recognition application. Face detection is also a challenging

task. However, highly successful techniques that have been recently introduced make this task a very advanced

field of research [6–9]. Among these methods, the AdaBoost cascade face detector of Viola and Jones [7] is

considered state-of-the-art. It uses a computationally efficient cascade of weak classifiers that rapidly rejects

background regions while keeping face image regions. Each classifier in the cascade is an AdaBoost ensemble

of rectangular Haar-like features.

Many methods have been proposed for the classification of faces returned by a face detector algorithm.

Among these methods, appearance-based methods are the most successful and practical ones. In these methods,

2D face images are first properly normalized based on facial feature locations and then they are resized to a

fixed size. This is followed by the extraction of features from the images. One of the most common feature types

is the gray-level values of pixels arranged in a fixed (typically raster) order. In addition to the gray levels, more

elaborate features that yield better results than gray levels, such as wavelets [10], Gabor filter-based features

[11,12], and discrete cosine transform (DCT) features [13,14], are used as well. Recently, local histogram-based

features including local binary patterns (LBPs) [15] and local ternary patterns (LTPs) [16] have become very

popular owing to their resistance to normalization errors and small lighting changes.

After the feature extraction step, each face image is usually represented with a feature vector, and thus a

face image can be thought of as a point in this vector space. The dimensionality of the vector space is typically

high, even for images of modest size. As a result, classification methods that work on this representation

encounter the so-called curse of dimensionality problem. However, since face images have similar structures,

face feature vectors are correlated and they lie on a manifold of intrinsically low dimension. Thus, any image in

the high-dimensional vector space can be represented in a lower-dimensional space without losing a significant

amount of important information. The eigenface method [17] was proposed for finding such a lower-dimensional

space. The key idea behind the eigenface method, which uses principal component analysis (PCA), is to

find the best set of embedding directions that will maximize the total scatter across all image vectors. In

choosing a criterion that maximizes the total scatter, the eigenface method tends to model unwanted within-

class variations such as those resulting from differences in lighting, facial expression, and other factors [18].

The linear discriminant analysis (LDA) method overcomes the limitations of the eigenface method by applying

Fisher’s linear discriminant criterion, which maximizes the ratio of the determinant of between-class scatter to

the determinant of within-class scatter in the embedded space. In face recognition tasks, LDA cannot be applied

directly since the dimensionality of the face feature vectors is typically very high compared to the number of

samples in the training set. As a consequence, the within-class scatter matrix is rank-deficient, a problem known

as the small sample size problem. The most common way to overcome this problem is to apply a two-stage PCA

+ LDA method (also known as the Fisherface method), in which PCA is first used for dimension reduction so

as to make the within-class scatter matrix nonsingular before the application of LDA [19,20]. However, in the

PCA + LDA method, applying PCA for dimensionality reduction has the potential to remove directions that

contain discriminative information. The discriminative common vector (DCV) method [18] has been proposed

to overcome the limitations of PCA + LDA. In DCV, the FLDA criterion is modified such that the embedding

directions are forced to come from the null space of the within-class scatter. As a result, the singularity problem

is avoided and it is proved that the resulting embedding directions span the optimal discriminant subspace [21].

When the face image vectors lie on a nonlinear manifold, the linear subspace-based methods discussed

above may not work well. The Laplacianface method [22] has been introduced for estimating the nonlinear face

manifold based on the fact that manifold structure is modeled by a nearest-neighbor graph, which preserves
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the local structure of the image feature vectors. In contrast to Laplacianfaces, kernel methods [21,23–26]

approximate the nonlinear manifold by nonlinearly mapping the image feature vectors into a higher-dimensional

space and then applying the linear subspace method in the mapped space. These methods are formulated in

terms of the dot products of the mapped samples, and kernel functions are used to compute these dot products.

Therefore, the nonlinear mapping function and the mapped samples are not used explicitly, which makes the

method computationally feasible.

In this paper, we first provide an extensive comparison of the most well-known embedding methods by

using different feature representations. In the literature, the researchers focused on either comparing different

embedding methods using one type of representation (typically gray-level values) [17–26] or different types of

representations tested with a limited number of embedding methods (typically Fisherfaces) [15,16]. In contrast,

we test almost all popular image representations including gray levels, LBP, LTP, DCT, and Gabor features using

the leading embedding methods of eigenfaces, Fisherfaces, DCV, their kernel counterparts, and Laplacianfaces.

It is well known that the success of appearance-based face recognition systems heavily relies on accurate

face and facial feature localization. Thus, most researchers skip the face detection stage by selecting face regions

and facial features manually. As a second contribution, we investigate the effect of the performance of face

detection and facial feature localization on face recognition accuracy, which is largely ignored in the literature

(there is a attempt in this direction in [27], but the author only investigates small localization errors by adding

artificial noise). In this paper, in the first scenario, we manually select the face region and normalize the face

images accurately based on manually located facial features (the way commonly preferred in the literature),

and then we compute recognition accuracies based on this precise normalization. In the second scenario, we

use the state-of-the-art algorithms to automatically detect face regions and facial features, and normalization

is done based on these imprecise detector outputs. Finally, we compute classification accuracies and compare

the results to the ones obtained by manual normalization. These results are more realistic and give an idea

about what to expect from an intelligent face recognition system that is designed for real-world face recognition

applications.

Lastly, we introduce a new face recognition database called the Eskişehir Osmangazi University (ESOGU)

face database. Most researchers report their results on different face databases by using their own setup since

a standard protocol is not defined. Thus, the results for the same face databases are not directly comparable

most of the time. To avoid this problem, in addition to the face images in this database, we provide manually

normalized images and all image descriptions obtained using the feature representations given above. We also

provide randomized indices to create training, validation, and test sets. Therefore, researchers can apply their

algorithms using the same experimental setup as in this paper and can compare their results directly to the

ones reported here. More detailed information can be found in Section 3.4.

2. Methods

We use appearance-based face recognition methods in this study. Alignment of the face region, feature choice,

and embedding method choice significantly affect the overall recognition performance in these methods. Now

we summarize the full face recognition methodology that we studied in this paper.

2.1. Face alignment

The performance of the recognition algorithms generally depends on careful cropping of the face region from

the whole image and proper positioning of the face image into a template so that the position of the features
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relative to a fixed coordinate system can be examined in a standard way. In general, the face alignment

procedure is usually done by manually selecting some fiducial points on the face (such as eyes, mouth, nose,

etc.) and applying a transformation to match an initially defined face template. In this study, we have studied

both manual and automatic face alignments, which are described in detail in Section 3. A manual alignment

procedure is necessary to compare the methods under controlled conditions, whereas an automatic alignment

procedure gives some idea about the real-world performance of the methods when adopted into intelligent face

recognition systems.

2.2. Features

In appearance-based face recognition, the pixel intensity values or gray-level values in the image are generally

represented in the form of a high-dimensional vector, and they constitute the raw representation of a digital

image. However, the dimensionality of the gray-level vector representation can sometimes be very high and

can include redundant information. In this case, one can transform the gray-level data into the set of features

using any feature extraction technique. Features are expected to be more compact and representative than

the gray-level representation. In this study, in addition to the gray levels, we experimented with the following

representations to seek more elaborate features yielding better results in face recognition: 2D Gabor filter, DCT,

LBP, and LTP-based features. Brief explanations of these methods are given in the following sections.

2.2.1. 2D Gabor filter-based features

Gabor filter-based feature extraction has been emerging as one of the most promising ways to represent an

image in a way that is similar to the representation of an image in the human brain. Marcelja [28] stated that

the representation of an image in the visual cortex must involve both location and spatial frequency variables

and the visual cortex representation corresponds closely to the Gabor scheme. Daugman [29] developed the 2D

form of the Gabor functions and Lee [30] showed that 2D Gabor functions can be used in image representation

as a series of local spatial bandpass filters.

A 2D Gabor function is simply the product of an elliptical Gaussian with the complex exponential.

Let(x, y) denote the spatial coordinate variables. Setting the sharpness of the Gaussian in the x-axis as α

and in the y -axis as β , and defining the constant ratios γ = f
α , η = f

β such that the functions on different

frequencies behave as a scaled version of each other, the 2D Gabor function can be written as given in Eq. (1)

[11].

GABOR(x, y) =
f2

πγη
exp

(
−
[
f2

γ2
x2
r +

f2

η2
y2r

])
exp (j2πfxr) (1)

Here, xr = x cos (θ)+y sin (θ), yr = −x sin (θ)+y cos (θ), f is the frequency of the modulating sinusoidal plane

wave, and θ is the orientation of the major axis of the elliptical Gaussian.

The 2D Gabor function is complex, but we can use its magnitude to construct a set of Gabor filters, called

the filterbank, with different scales and orientations. Since the local frequency and orientation are unknown, Ns

number of different scales and No number of different orientations are usually performed in the filter bank. This

results in a total of (Ns ×No) different filters. The outputs of each filter are concatenated and the resulting

vector finally forms the Gabor feature of the image. The dimensionality of the resulting feature is usually very

high and the resulting feature could be downsampled so that the size of the feature is diminished to a moderate

level for memory considerations.
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2.2.2. LBP features

The local binary patterns were first described in [31] and have been found to be a powerful feature for texture

classification. The method has further been used as a feature extraction method in face recognition [15]. The

LBP method makes a pairwise comparison of a pixel value with its neighboring pixels in order to assign a label

to every pixel of the image, resulting in a binary number [15]. The neighborhood size may differ to deal with

textures at different scales, but the 3 × 3 neighborhood is the most common. Basically, the LBP pattern is

obtained as follows: the center pixel is chosen as the reference pixel. The intensity value of the reference pixel

is compared to the other pixels in its neighborhood. If the reference pixel value is greater than or equal to the

neighboring pixel, the value of the neighboring pixel is set to 1; otherwise, it is set to 0. The binary pattern for

the reference pixel is then obtained by collecting binary digits from its neighboring pixels. The final resulting

binary value is converted into its decimal representation. This procedure is visualized in Figure 1.

Figure 1. An LBP extraction using 3 × 3 neighborhood.

The LBP operator can be formulated as given in Eq. (2). Here, xc and yc denote the central pixel

locations, ic is the intensity value of the central pixel, in with n = 0, · · · , 7 denotes the intensity value of the

nth neighboring pixel, and s [k] is the unit step function, which returns 1 if k ≥ 0 and 0, or otherwise:

LBP (xc, yc) =
7∑

n=0

2ns [in − ic] . (2)

The LBP method is capable of representing faces in a very simple but effective way. Additionally, using this

method, particularly the lighting intensity changes in the image can be reduced.

2.2.3. LTP features

The LTP method is an extension of the LBP method. LTPs are supposed to be less sensitive to noise in uniform

regions and have more discriminative power [16]. Basically, to be more robust to noise, the LTP extends the

LBP to 3-valued codes: (−1, 0, 1). The gray-level values in the neighborhood of a central pixel are quantized to

−1 if they are less than (ic − t) value, they are quantized to 0 if they are in the closed interval of [ic − t, ic + t] ,

and they are quantized to 1 if they are greater than (ic + t), where t is a user-specified threshold. The LTP

extraction procedure is illustrated in Figure 2.
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Figure 2. An LTP extraction using 3 × 3 neighborhood.

The ternary pattern in this method has three codes, but instead of applying 3n -valued codes, the final

codes are converted to binary representation by splitting them into their positive and negative halves, as shown

in Figure 2. In other words, the LTP method subsequently treats the ternary pattern as two separate channels

of LBP descriptors for which separate histograms and similarity metrics are computed and the results are

combined at the end of the computation [16].

2.2.4. DCT features

The DCT is a Fourier-related transform that attempts to decorrelate the image data and finds compact

representation of the data in the form of the DCT coefficients. The DCT provides a good compromise between

information-packing ability and computational complexity. As a result, the DCT has become an international

standard for transform coding systems [32]. The DCT has also been used as a feature extraction method in

face recognition studies [13,14]. The formulation of the DCT for an N × N image having intensity i (x, y)

can be given as in Eq. (3).

DCT (u, v) = α (u)α (v)

N−1∑
x=0

N−1∑
y=0

i (x, y) cos

[
π (2x+ 1)u

2N

]
cos

[
π (2y + 1) v

2N

]
(3)

Here, u, v = 0, 1, · · · , N − 1 and α (k) =

{ √
1/N, k = 0√
2/N, k = 1, 2, · · · , N − 1

.

The DCT coefficients form an N × N matrix. The first DCT coefficient located at the top left

corner represents the average intensity value of the block. The uniform brightness change in the image block

is eliminated by removing this coefficient from the representation. Other coefficients represent the spatial

frequency components of the image and they are located in the matrix from low- to high-frequency order. The

DCTs obtained from the low-frequency band are important for representing significant facial features such as

hair, face, nose, mouth, and eyes. These coefficients are located in the upper left corner of the DCT matrix.

The DCT feature extraction is applied to the face image after detection and normalization. In this

method, the face image is divided into M × M blocks and each block is represented by its DCT coefficient.

In each block, a number of coefficients are collected from the upper left corner of the DCT matrix in a zigzag

manner. The face feature representation is obtained by concatenating these coefficients [13,14,33].
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2.3. Embedding methods

Face images are represented with feature vectors rather than gray-level values after the feature extraction

step. Thus, at this point, a face image can be thought of as an element of another vector space whose

dimensionality is still high even for images of modest size. As a result, classification methods that work on this

representation encounter the so-called curse of dimensionality problem. However, using embedding techniques,

any image in the high-dimensional vector space can be represented in a lower-dimensional space without losing

a significant amount of important information. In this study, we consider the most well-known linear and

nonlinear embedding methods: eigenface [17], LDA [19], DCV [18], Laplacianfaces [22], kernel PCA [25,34],

kernel LDA [23,24], and kernel DCV [21].

In order to fix the notations, let us assume that the training set is composed of C classes, where the ith

class is denoted by ω(i) containing ni samples, and let xim be a d-dimensional (d = d1 × d2) column vector

representation of a d1 × d2 face image sample coming from the ith class. There will be a total of n =
∑
i

ni

samples in the training set. The matrix X corresponds to the data sample matrix where each column shows a

sample in the training set (X = [x11 x12 · · · xim · · · xCnC ]) . We summarize the embedding methods used

in this study in the following subsections.

2.3.1. The eigenface method

The aim of the eigenface [17] method is to determine the optimum projection matrix that projects the sample

vectors onto a lower dimensional space. The optimum projection matrix is a matrix in which each column is

formed with the first few principal components, also called the basis vectors of the subspace. The basis vectors

of the subspace are obtained by using the scatter matrix ST , defined as:

ST =
C∑
i=1

ni∑
m=1

(xim − µ) (xim − µ)
T
, (4)

where µ is the mean of all images in the training set. The singular value decomposition of the scatter matrix

yields eigenvalues and the corresponding eigenvectors of ST . Since the scatter matrix is a positive semidefinite

matrix, all eigenvalues are greater than or equal to 0. When the eigenvalues are sorted in descending order, the

first few eigenvectors corresponding to the largest eigenvalues are taken as the basis vectors of the subspace.

Assuming that first ld principal components are used to construct the subspace, then the optimum projection

matrix is formed by putting the first ld eigenvectors in the column of a matrix. Usually, ld << d . If the

eigenvectors are represented with vk , k = 1, · · · , ld and the optimum projection matrix is represented by

W = [v1 v2 · · · vld ] , then the embedding is realized with the following projection that yields yim ∈ ℜld as

the output vector.

yim = WTxim (5)

2.3.2. The LDA method

The LDA method overcomes the limitations of the eigenface method by applying Fisher’s linear discriminant

criterion [19,20]. This criterion aims to maximize the legibility of different classes while at the same time

minimizing the similarity of the samples appertaining to the same class. Let the within-class scatter matrix,

SW , and the between-class scatter matrix, SB , be defined as follows, where µi is the mean of the samples
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belonging to the ith class and µ is the mean of the training set including all samples:

SW =
C∑
i=1

ni∑
m=1

(xim − µi) (xim − µi)
T
, (6)

SB =
C∑
i=1

ni (µi − µ) (µi − µ)
T
. (7)

The LDA method then tries to maximize the ratio J (Wopt) = argmax
W

|WTSBW|
|WTSWW| . This ratio is maximized

when the column vectors of projection matrix W are the eigenvectors of S−1
W SB . In face recognition tasks, this

method cannot be applied directly since the dimension of the sample space is typically larger than the number

of samples in the training set, known as the small sample size problem. As a consequence, SW is singular in

this case and the inverse of it cannot be calculated. The most common way to overcome this problem is to

apply a 2-stage PCA + LDA method (also known as the Fisherface method), in which PCA is first used for

dimension reduction so as to make the within-class scatter matrix nonsingular before the application of LDA

[19]. In this study, we applied this method and in some references it may be called FLDA.

At the end, the projection matrix is formed by using a similar procedure as in the eigenface method. The

singular value decomposition is applied to the matrix S−1
W SB in this case, and the subspace basis vectors are

chosen as the eigenvectors corresponding to the nonzero eigenvalues. As a result, the embedding is carried out

as given in Eq. (5).

2.3.3. The DCV method

The DCV method is another powerful embedding method for face recognition [18]. In DCV, the FLDA criterion

is modified such that the embedding directions are forced to come from the null space of the within-class

scatter. As a result, the singularity problem is avoided and the resulting embedding directions span the optimal

discriminative subspace. The DCV method can be only used when the dimension of the sample space is greater

than the rank of SW [18].

The DCV method starts with the common vector determination of the within-class scatter matrix SW

given in Eq. (6). As mentioned in the previous section, the dimension of the sample space is typically larger

than the number of samples in the training set, which yields a singular scatter matrix. If the rank of SW

is r , this guarantees the first r eigenvalues to be positive and the rest are zero when the singular value

decomposition is applied to it. Eigenvectors corresponding to positive eigenvalues are the basis of the range

space and eigenvectors corresponding to zero eigenvalues are the basis of the null space of SW . Let the

eigenvectors of SW corresponding to positive eigenvalues be denoted by vj , j = 1, 2, · · · , r , and then the

common vectors of the classes can be determined by using these vectors as given in Eq. (8).

xcom
i = xim −

r∑
j=1

⟨xim,vj⟩vj , ∀m (8)

Here, xcom
i ∈ ℜd denotes the common vector of the ith class and the ⟨·, ·⟩ operator represents the vector inner

product of its entries. This equation is satisfied for any choice of m . After that, the scatter matrix of the
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common vectors, Scom , is defined as given in Eq. (9).

Scom =

C∑
i=1

(xcom
i − µcom) (xcom

i − µcom)
T

(9)

Here µcom = 1
C

C∑
i=1

xcom
i denotes the mean of the common vectors.

In the end, the projection matrix is formed by applying the singular value decomposition to Scom . There

are (C − 1) positive eigenvalues and the eigenvectors corresponding to these eigenvalues are chosen as the basis

vectors forming the projection matrix. If these eigenvectors are denoted by wk , then the projection matrix is

formed as W = [w1 w2 · · · wld ] and the embedding is realized as given in Eq. (5). Note that ld = C − 1 in

this case.

2.3.4. The Laplacianfaces method

The Laplacianfaces method [22] searches for an embedding space in which the similarity among the local

neighborhoods is preserved. First, a similarity (also called adjacency) graph with n nodes is constructed. An

edge between nodes i and j is created based on neighborhoods (e.g., using the k -nearest neighbors). After

that, each edge is weighted according to a similarity function, e.g., the heat kernel function. The weights Sij

lie in the range [0,1] and take higher values for closer samples. The goal of Laplacianfaces is to minimize the

loss function

J (w) =
1

2

∑
k,l

(yk − yl)
2
Sij , (10)

where w is the embedding direction, and yk = wTxk is a one-dimensional representation of xk , which denotes

any sample in the training set. This loss function assigns a high penalty to mapping neighboring points xk and

xl far apart. The loss function can be written in a more compact form as

J (w) = wTX (D− S)XTw = wTXLXTw, (11)

where S is the matrix of weights, and D is the diagonal matrix whose entries are the column (or row) sums

of S. The matrix L = (D− S) is called the Laplacian matrix. An additional constraint, wTXDXTw = 1, is

included to normalize the projected data. The final embedding matrix W is constructed by the eigenvectors,

which are the minimum eigenvalue solutions to the generalized eigenvalue problem:

XLXTw = λXDXTw. (12)

Note that the two matrices XLXT and XDXT are both symmetric and positive semidefinite since the Laplacian

matrix L and the diagonal matrix D are both symmetric and positive semidefinite. After the projection matrix

W is formed by using w vectors in the columns, the embedding can be realized as given in Eq. (5).

2.3.5. The kernel PCA method

The kernel methods have been proposed to overcome the separability of data that have an intrinsically nonlinear

structure. For these cases, the linear methods may not provide sufficient discriminative power. Thus, the kernel

trick, which is a way of mapping the data to a higher-dimensional inner product space, is applied to the linear
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methods with the expectation that the data gain meaningful linear structure in the new space and become

linearly separable there. The basic idea of the kernel methods can be summarized as first transforming the data

samples into a higher-dimensional space ℑ through a nonlinear mapping function φ (·) such that φ (·) : ℜd → ℑ ,

and then applying the linear methods in this space.

The principle of the kernel PCA method has a similar idea [34]. Let φ (xim) denote the mapped samples;

the total scatter matrix SΦ
T of this method is then as given in Eq. (13).

SΦ
T =

C∑
i=1

ni∑
m=1

(
φ(xim)− µΦ

) (
φ(xim)− µΦ

)T
(13)

Here, µΦ denotes the mean of all mapped samples. The principal components are computed by solving the

eigenvalue problem:

λw = SΦ
Tw. (14)

All eigenvectors w corresponding to the nonzero eigenvalues lie in the span of
{
φ(xim)− µΦ, ∀i,m

}
, resulting

in:

w =
C∑
i=1

ni∑
m=1

αim

(
φ(xim)− µΦ

)
. (15)

The solution of the eigenvalue problem in Eq. (14) is equivalent to the solution of the eigenvalue problem

of nλα = Kα , where the K ∈ ℜn×n matrix is the kernel matrix, n is the total number of samples, and

α = [α11, · · · , αim, · · · , αCnC ]
T
. Since {wj , j = 1, · · · , n− 1} must be an orthonormal set, the vectors αj must

be normalized such that ⟨αj , αj⟩ = 1 [35].

Finally, the most significant ld vectors can be chosen to construct the projection matrix. If these

eigenvectors are denoted by {wk, k = 1, · · · , ld} , then the projection matrix is formed as W = [w1 w2 · · · wld ]

and the embedding is realized as given in Eq. (16).

yim = WT
(
φ(xim)− µΦ

)
(16)

Note that this computation can easily be evaluated through inner products with respect to the sample vectors

in the training set.

2.3.6. The kernel LDA method

The kernel LDA method is an extension of Fisher’s linear discriminant analysis using the kernel trick in

a similar way as described the previous subsection [23,35,36]. In this method, the within- and between-class

scatter matrices are determined using the following equations.

SΦ
W =

C∑
i=1

ni∑
m=1

(
φ(xim)− µΦ

i

) (
φ(xim)− µΦ

i

)T
(17)

SΦ
B =

C∑
i=1

ni

(
µΦ
i − µΦ

) (
µΦ
i − µΦ

)T
(18)

Here, µΦ
i represents the mean of the mapped samples belonging to the ith class and µΦ is the mean of the all

samples. This method aims to maximize the FLDA criterion JΦ
FLDA (Wopt) = max

|WTSΦ
BW|

|WTSΦ
WW| in the mapped
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space ℑ . The projection vectors that maximize this criterion are obtained by solving the following eigenvalue

problem:

λSΦ
Ww = SΦ

Bw. (19)

This problem can be reformulated in terms of dot products as

λKWKT
Wα = KBK

T
Bα, (20)

where KW ,KB ∈ ℜn×n are the kernel matrices. However, the matrix KWKT
W is rank-deficient since its rank

cannot be larger than n−C . Therefore, a small diagonal perturbation matrix ∆ is added to it in order to make

it nonsingular. The singular value decomposition is then applied to the final matrix
(
KWKT

W +∆
)−1

KBK
T
B

to determine the most significant eigenvectors. The eigenvectors are first normalized as in the kernel PCA case

and they are used to construct the projection matrix W in the same way, and the final embedding is realized

as given in Eq. (16).

2.3.6. The kernel DCV method

The kernel trick can also be applied to the discriminative common vectors method, which maps the original

sample space to a higher dimensional mapped space [21]. The mapped space could be arbitrarily large and

possibly have an infinite dimensionality. This is why the null space separation of the within-class scatter matrix

is always accomplished in the mapped space, which makes a perfect environment for the application of the DCV

method. Therefore, by applying the kernel DCV method, a 100% recognition accuracy rate with respect to the

training data can be obtained for linearly nonseparable classes [35].

In the kernel DCV method, the optimal projection vectors can be found by first projecting the training

set samples onto a total scatter matrix through the kernel PCA. The vectors that span the null space of the

within-class scatter matrix of the transformed samples can then be determined by applying the DCV method,

given in Section 2.3.3, in the transformed space. The kernel DCV procedure can be summarized as follows.

Let SΦ
T denote the total scatter matrix given in Eq. (13), R

(
SΦ
T

)
denote the range space of SΦ

T , and

Φ = [φ(x11) φ(x12) · · · φ(xCnC )] represent the matrix whose columns are the transformed training samples

in the transformed space ℑ . First, the training set samples are projected onto R
(
SΦ
T

)
through the kernel PCA

method given in Section 2.3.5. The kernel matrix is given as

K = ΦTΦ = ⟨φ (xim) , φ (xjn)⟩

∣∣∣∣∣∣∣ i, j = 1, · · · , C
m = 1, · · · , ni;n = 1, · · · , nj

= k (xim,xjn)

∣∣∣∣∣∣∣ i, j = 1, · · · , C
m = 1, · · · , ni;n = 1, · · · , nj

,

(21)

where k (·) represents the kernel function. The kernel matrix K ∈ ℜn×n satisfies the equality

K̃ = K− (1/n)1K− (1/n)K1+ (1/n2)1K1 = UΛUT , (22)

where K̃ ∈ ℜn×n and 1 ∈ ℜn×n is a matrix whose entries are all ones. Λ is the diagonal matrix of nonzero

eigenvalues and U is the matrix of normalized eigenvectors associated with Λ . The matrix that transforms the

training set samples onto R
(
SΦ
T

)
is (Φ− (1/n)Φ1)UΛ−1/2 [21]. The corresponding total class scatter and

11
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within-class and between-class scatter matrices are given in Eqs. (23)–(25).

S̃Φ
T =

(
(Φ− (1/n)Φ1)UΛ−1/2

)T

SΦ
T

(
(Φ− (1/n)Φ1)UΛ−1/2

)
(23)

S̃Φ
W =

(
(Φ− (1/n)Φ1)UΛ−1/2

)T

SΦ
W

(
(Φ− (1/n)Φ1)UΛ−1/2

)
(24)

S̃Φ
B =

(
(Φ− (1/n)Φ1)UΛ−1/2

)T

SΦ
B

(
(Φ− (1/n)Φ1)UΛ−1/2

)
(25)

Here, SΦ
W and SΦ

B are the traditional within-class and between-class scatter matrices given in Eqs. (17) and (18).

Next, the vectors that span the null space of S̃Φ
W are found by the singular value decomposition procedure. The

normalized eigenvectors corresponding to zero eigenvalues of S̃Φ
W form an orthonormal basis for the null space

of S̃Φ
W . Let V be the matrix whose columns are the computed eigenvectors corresponding to zero eigenvalues

such that VT S̃Φ
WV = 0. After that, the null space of VT S̃Φ

BV , if it exists, is removed and the projection

directions are rotated so that the new total and between-class scatter matrices are diagonal to imply that the

scatter matrices of the feature vectors of the training set samples are uncorrelated, as given in Eq. (26).

VT S̃Φ
BV = VT S̃Φ

TV = VTΛV = QΛ̃Q
T

(26)

The final projection matrix of the kernel DCV method can be found as:

W = (Φ− (1/n)Φ1)UΛ−1/2VQ. (27)

There are, at most, C − 1 projection vectors. The final feature vector of a sample is realized as given in Eq.

(16).

3. Experimental work

In this study, we first arranged a new database including the frontal images of 100 people taken under different

lighting and posing conditions. We then performed face recognition experiments on our database to test the

results of the feature extraction and embedding methods. For comparison, we also tested the recognition

results of the methods on another database, namely the well-known AR face database [37]. We applied two

different experimental designs in the preparation of the face images from the original frontal images for both

databases. The first design was prepared to see the performances of the features and embedding methods under

the assiduously preprocessed face images, a process that includes manual alignment of the face regions, whereas

the second design was prepared to get an idea about their performances in real-world intelligent recognition

applications, a process that includes automatic alignment of face regions. This section describes our experimental

study in detail with the following organization: we introduce our database in the first subsection, define our face

alignment designs in the second and third subsections, give the recognition experiments’ setup with recognition

results in the fourth subsection, and, finally, discuss our results in the fourth subsection.

3.1. ESOGU face database

The ESOGU face database includes 100 frontal images of 78 males and 22 females. The images were captured

using a Sony DSC-H20 digital camera in two sessions with at least 10 days of time lag between the sessions.

12
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In each session, a total of 9 poses were taken (6 of them with different facial expressions and 3 of them with

different lighting conditions). As a result, the database includes 18 images per person, which makes a total of

1800 images.

The images, including facial expressions, were taken with a moderate amount of daylight illumination.

To strain different illumination conditions, 3 extra Multiblitz 1000 W tungsten lights were located at the left,

right, and front of the face and in turns they were turned on to generate different illuminations. The layout

plan of the studio is given in Figure 3.

Figure 3. The layout plan of the studio.

A sample image set summarizing facial expressions for one person in a session is illustrated in Figure 4.

Figure 4 shows (a) neutral, (b) smiling, (c) angry, (d) surprised, (e) winking, (f) wearing sunglasses, (g) neutral

with the right lamp on, (h) neutral with the left lamp on, and (i) neutral with the frontal lamp on poses. The

other session includes identical poses but with a time gap between them. We did not restrict the hair, beard,

makeup, or clothing styles of the contributors. The resulting images were taken with a resolution of 72 × 72

dpi and a size of 2592 × 1944 pixels each.

3.2. Face alignment procedure 1

The recognition performance of the face recognition system is highly dependent on the proper alignment of the

face images. As the first alignment procedure, we chose to use the most common method for the discrimination

of the face image. In this method, the face region is carefully cropped from the frontal image in a standard

way, which generally needs some human effort. In most of the studies in this area, the face region is cropped

with a fixed rectangular window size such that some fiducial points, such as the eyes or mouth, are located

at some special location in the window and the cropped region is used as the face image [1–4,18–26]. In this

study, we prepared a rectangular window template in which the center of the left and right eyes of the people

are positioned at some fixed coordinates, the input image is rotated and scaled, and the face region is cropped

so that it exactly matches the face template. To this end, we manually annotated the eye coordinates of the

original frontal image and made a standard linear conformal transformation to map the input image to the

template. The transformation basically includes the rotation and scaling procedure. The rotation angle is

determined by using the inclination of the line joining the two eyes and the scaling coefficient is determined by

13



YAVUZ et al./Turk J Elec Eng & Comp Sci

using the distance between the two eyes. Final cropping is realized by using the new coordinates of the eyes in

the rotated and scaled image. The operation is summarized in Figure 5. First eye coordinates are annotated

manually (shown in Figure 5a), and then the image is rotated and scaled (shown in Figure 5b) such that the

final cropped image exactly matches the face template (shown in Figure 5c).

Figure 4. Posing variations of a person in the database.

Figure 5. Face alignment procedure based on the locations of the eyes.
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3.3. Face alignment procedure 2

The previous procedure needs human effort to result in a very negligible normalization error. However, we

can determine the face region and follow similar steps using automatic algorithms, which require no human

effort. We call this procedure the automatic face alignment procedure. It uses the detection of the face region

first, and after that, it searches the coordinates of the center of the eyes within the face region by using some

special algorithms. We adopted this procedure to the study with the intention of using it in an automatic face

recognition system.

In this study, we used two state-of-the-art face detection algorithms: the AdaBoost cascade face detector

of Viola and Jones [7], and the cascade face detector of nearest convex model classifiers [9]. The AdaBoost

face detector is a very popular publicly available algorithm. It consists of a computationally efficient cascade of

weak classifiers that rapidly reject the background regions while keeping face image regions. Each classifier in

the cascade is an AdaBoost ensemble of rectangular Haar-like features. The other face detector [9] was recently

developed in our lab and we will briefly explain it below.

In contrast to other face detection algorithms that formulate the problem as a binary classification, the

cascade face detector of the nearest convex model classifiers approach [9] focuses on approximating the regions

spanned by the instances of a face class using a cascade of efficient convex class models. Once the regions are

estimated as belonging to the face class, a feature vector extracted from an image region is classified (whether

it is a face or background) based on its distances to the convex class models, which are arranged in a cascade

structure. The method uses the sliding window approach during detection of faces. In this approach, each

image is scanned from the top left to the bottom right at different scales by sliding a fixed size window, and

each local window is classified as a face or background.

The cascade face detector of nearest convex model classifiers consists of three stages: the first stage of the

cascade uses a combination of linear hyperplanes for approximation of face class, and the goal of this stage is to

accept almost all of the face class samples and at the same time to reject a majority of the background samples

rapidly. The second stage of the cascade includes the support vector data description classifier [38], which uses

a linear hypersphere model for approximating face class. This stage is also fast and it works with the first stage

in a complementary way by rejecting the majority of false positives accepted by that stage. The last stage of the

cascade makes the final decision, and it uses a nonlinear hypersphere model for approximation of face class. This

is the slowest stage, but it works only with a few promising samples accepted by the first two stages. In order

to represent images, we have used a combined representation by concatenating the feature vectors obtained

by using LBP and histograms of oriented gradients descriptors [39]. The proposed detector outperformed the

AdaBoost cascade detector and some other face detectors on different face detection databases. A keen reader
is referred to [9] for more details on this detector.

After the detection of the face region, we need to determine the coordinates of the center of the eyes

of the face. This process is another challenging task [40]. For this purpose, we used one of the most efficient

algorithms given in [41]. The automatic detection of the face region and the automatic determination of the

eye coordinates are summarized in Figure 6. The first step of the procedure is the face detection as given in

Figure 6a, and next the eyes are searched within the face region and the center coordinates of the eyes are

found automatically as denoted by the red circles in Figure 6b. The same mapping of the previous section

is then applied to match the face image to the face template given in Figure 6c. The difference between this

procedure and the previous procedure is that the alignment of the face is realized without any human effort in

this case. Note that any wrong determination of the coordinates of the eyes results in some error for matching
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the template exactly. By comparing the results given in Figures 5c and 6c, one can observe that the resultant

face coordinates exactly match the template in Figure 5c, but there is a matching error in Figure 6c. This is

because of the wrong determination of the left eye coordinate in the automatic detection of the eyes.

Figure 6. Automatic face alignment procedure.

3.4. Face recognition experiments

We performed face recognition experiments on the ESOGU face database and AR face database using both

procedures given in the preceding two subsections. After the face image is aligned, in addition to the gray-

level values of the face images, the features mentioned in Section 2.2 are extracted and they are used with

the embedding methods mentioned in Section 2.3. As a whole, we have tested five different features, the

gray-level values, the 2D Gabor filter features, LBP, LTP, and DCT features, with the 7 embedding methods:

PCA (eigenfaces), LDA, Laplacianfaces, DCV, kernel PCA, kernel LDA, and kernel DCV. Experiments were

simulated in MATLAB (ver. 7.9.0.529) and source codes are available at

http://www2.ogu.edu.tr/∼mlcv/FaceRecog/esogumlcv FaceRecogProgs.rar.

In the experiments, we need to divide the images in the database such that some randomly selected ones

are used in the training and the rest are used in the test stages. To end up with a diffuse study, we tried a

group of experiments including different numbers of samples in the training sets. For instance, the ESOGU

face database includes 18 images per person and we tried the training set groups including ni = 3, 6, 9, 12, 15

numbers of samples for each class with the rest of the 18−ni samples used in the test set. The AR face database

includes 26 images per person and we tried the training set groups for ni = 5, 9, 13, 17, 21 samples.

Random selection of samples has been fixed for all methods by constructing random index lists. In this

procedure, the images are arranged in a way such that every image has an index number. We then constructed

20 different lists in which these index numbers were randomly mixed in order. For example, images for the

ESOGU face database have index numbers from 1 to 18, but in the random list, the ordering is made randomly

so that when the ni = 5 case is examined, the first 5 samples are used in the training and the remaining 13

samples are used in the test sets. This standardization of random selection lists make the experiment comparable

with numerous methods under the same conditions. Random selection lists are saved and any keen researcher

can easily experiment with his/her methods using our experimental setup and database.

Some embedding methods used in the study have some parameters that needed to be previously defined.

Therefore, we created a total of 20 random index lists in which we intended to use the first 10 runs for the

parameter evaluation experiments and the next 10 runs to assess the performance. The final correct recognition

rates are calculated as the average of the recognition rates of 10 runs. For the parameter evaluation case, the

parameter that gives the maximum recognition rate is chosen in the experiments.
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3.4.1. Experiments on the ESOGU face database with manually aligned face images

The ESOGU face database includes 1800 images of 100 people and we used all poses in the experiment. For

memory considerations, we have chosen a face template of size 70 × 55 and have done the face alignment

procedures according to this principle. Image samples of a person from the ESOGU database are shown in

Figure 7. Images in row 1 are the poses of session 1 and images in row 2 are the poses of session 2.

Figure 7. Resultant face images of a person from the ESOGU database where the face region is aligned with procedure 1.

In the experiments, the features are extracted as given in Section 2.2. Gray-level values are concatenated

to form the gray-level feature vector of a sample xESOGU
graylevel ∈ ℜ3850 . LBP features are extracted using the 3 ×

3 neighborhood of a pixel. The whole image is subdivided into 7 × 5 subwindows and the LBP code of each

subwindow is extracted, and then they are concatenated, resulting in a final feature vector of xESOGU
LBP ∈ ℜ2065 .

LTP features are composed of 2 channel LBPs and they are extracted in the same way as the LBP, resulting in

a feature vector of xESOGU
LTP ∈ ℜ4130 . The DCT features result in a feature vector xESOGU

DCT ∈ ℜ3150 . The Gabor

features are extracted using the parameters γ = η = σ√
2π

with the standard deviation of the Gaussian σ = 2π ,

orientation angles θk = kπ
8 , k = 0, 1, · · · , 7, and scalings with fa = fmax

2a/2 , a = 0, 1, 2, 3, 4, where fmax =
√
2.

The filter results of 5 different scales and 8 different orientations are concatenated, giving a huge vector. Finally,

due to memory considerations, the resulting vector is downsampled in a feature vector of xESOGU
Gabor ∈ ℜ9600 .

The recognition results for manually aligned face images of the ESOGU database are given in Table 1,

where ni denotes the number of images used in the training set. The recognition rates are given in percentages,

which denote the average rates of the 10 experiments with the standard deviation information near them. Values

given in bold denote the embedding method that gives the maximum recognition rate, and the underlined values

denote the feature that gives the maximum rate in each round of the experiments.

We have 5 features and 7 embeddings, and for each feature-embedding pair, we did recognition experi-

ments for 5 different numbers of training samples that made a huge table. To compare the embedding methods,

we concentrated on the maximum recognition rate in each row of Table 1. In the table, there are 26 maximum

values. In 12 of 26, the kernel DCV; in 10 of 26, the kernel LDA; in 3 of 26, the DCV; and in 1 of 26, the

Laplacianfaces method performed better than the others. The PCA, LDA, and kernel PCA did not give a best

recognition rate in any round. In terms of the embedding method types, we can say that kernel methods give

better results than linear methods in general. However, when we compare the results of linear and nonlinear

methods separately, we can say that the DCV gives the best recognition rates among the linear methods, and

kernel DCV and kernel LDA perform better than the Laplacianfaces and kernel PCA among the kernel methods.

We can compare the results of the different features to determine the best, similar to the previous case.

When we consider the features giving the maximum recognition rates for each ni , we see that the LBP features
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are superior to the others in all cases. LTP, Gabor, DCT, and gray-level features follow them, respectively. In

fact, all features give higher than 90% recognition results when used with the best resulting embeddings and

equal number of training and test sets, which can be accepted as evidence that they can perform well. However,

the recognition rates of the LBP features are no doubt superior to the others, especially when used with the

kernel LDA or kernel DCV methods.

Finally, when we consider the recognition results depending on just ni , we can say that they have an

increasing behavior. This implies that using more samples in the training results in better separable class models

yielding high recognition rates, as expected.

3.4.2. Experiments on the AR face database with manually aligned face images

The AR face database [37] includes 26 poses per person taken under different lighting conditions and occlusions.

Poses are taken in two different sessions. We randomly selected 50 people from the AR face database and used

all poses in the experiment. We preprocessed the initial frontal images in a similar way to the previous case,

resulting in a face image template size of 114 × 84. Face images of one person from the database are shown in

Figure 8. Session 1 poses are given in the first row and session 2 poses are given in the second row of the figure.

Figure 8. Resultant face images of a person from the AR database where the face region is aligned with procedure 1.

We used the same experimental setup mentioned at the beginning of the section. The features of the

images in the AR face database are extracted in the same way as with the ESOGU face database. The resulting

feature sizes can be summarized as: xAR
graylevel ∈ ℜ9576 , xAR

LBP ∈ ℜ2065 , xAR
LTP ∈ ℜ4130 , xAR

DCT ∈ ℜ8250 ,

xAR
Gabor ∈ ℜ12920 . Note that because of subdividing an equal amount of windows, the final sizes of LBP and

LTP feature vectors are the same as those in the ESOGU database, and because of having different template

image sizes, the sizes of the rest of the features are different. The experimental results of the AR face database

for manually aligned images are given in Table 2.

There are 25 rounds and 30 maximum values in Table 2. When we look at the table to compare the

embedding methods, we see that the kernel DCV gives maximum recognition rates in 15, kernel LDA in 7, LDA

in 5, DCV in 2, and Laplacianfaces in 1 of them. PCA and kernel PCA do not give a best result in any round.

In linear methods, LDA performs better than DCV in this case, but their results are close to each other in

general. In the kernel methods, kernel DCV performs better than kernel LDA, but again these two methods

result in approximate values.

The AR face database is a widely used database in face recognition. In this study, we used a subset of

the AR face database, but we can make comparisons with the results of some other studies. In order to make

a fair comparison, the experimental setup and the data processing styles should be the same in all papers, but

this is not possible. Therefore, an approximate comparison can be done with [42], which provides the results

of many studies in a combined way. The results of similar embedding methods used in that study have been

reported as averages, which look similar to the results found in this study.
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In terms of the feature types, LTP in this case generally results in highly recognizable features. Only

when ni = 5 do LBP features give the maximum recognition result. In other cases (ni = 9, 13, 17, 21), LTP

achieves better recognition rates. In one case, when ni = 21 and the kernel DCV is used as the embedding

method, complete recognition with no error is achieved with LTP features.

3.4.3. Experiments on the ESOGU face database with automatically aligned face images

We conducted recognition experiments by using the face images obtained with the automatic alignment pro-

cedure of the frontal images given in Section 3.3. In this procedure, the face is mapped to the template

automatically using the aforementioned detection algorithms. Faces that are not detected are left blank and

labeled with an extra class to discriminate them from the proper detections. After that, the same experimental

procedure is applied with the important exception that the face images that were not detected are accepted as

wrong classifications as a default. To this end, we use the first ni correctly detected face images in the training,

and the rest of the images are used in the test phases. If there is any misdetected image in the test, it is directly

assigned as a wrong recognition at the end.

For the ESOGU face database, 68 images of 1800 images are not detected. The initial correct detection

rate is thus 96.22%. This is not a bad result at all. Misdetection generally occurs in poses where we expose

extra illumination, especially from the side. Rather than the face detection, the determination of the eye

coordinates is another crucial issue in the automatic alignment procedure. An improper determination of the

eye coordinates results in a wrong mapping of the face to the template, which has a great influence in recognition

performance. Because the operation is made by automatic algorithms, we notice some mistakes in the final face

images that are automatically aligned. Some automatically aligned face samples from the ESOGU database

are shown in Figure 9. The black images in the figure represent the faces that are not detected. Scaling and

shifting differences of the images in the figure are because of the wrong determination of the exact coordinates

of the center of eyes. By way of illustration, we include some good and some bad examples in the figure.

Figure 9. Some face images from the ESOGU database in which the face region is aligned automatically using

procedure 2.

Recognition experiments on the automatically aligned faces of the ESOGU database were performed and

the results are given in Table 3. In the setup, misdetected sample indices are used at the end of the index with

an ordering such that the faces that were not detected are used at the end of the test set list. There are at most

4 misdetections for a person in the database, so we used ni = 3, 6, 9, 12 samples in the training and the other

15, 12, 9, 6 respective samples in the testing to ensure that the faces not detected are used in the test phase such

that we can label them as a wrong recognition.

21



YAVUZ et al./Turk J Elec Eng & Comp Sci

T
a
b
le

3
.

E
S
O

G
U

fa
ce

d
a
ta

b
a
se

re
co

g
n
it
io

n
re

su
lt

s
(a

u
to

m
a
ti
ca

ll
y

a
li
g
n
ed

im
a
g
es

).

F
ea

tu
re

n
i

P
C

A
L
D

A
D

C
V

L
ap

la
ci

a
n
fa

ce
K

er
n
el

P
C

A
K

er
n
el

L
D

A
K

er
n
el

D
C

V

(%
)

σ
(%

)
σ

(%
)

σ
(%

)
σ

(%
)

σ
(%

)
σ

(%
)

σ

G
ra

y
le

v
el

n
i

=
3

34
.1

7
9.

7
9

37
.0

7
5.

5
3

49
.8

7
4
.9

2
3
7.

3
0

5.
81

33
.9

0
9.

7
1

5
0.

96
5.

2
5

5
2
.0

7
5.

55

n
i

=
6

47
.1

4
4.

7
5

53
.6

8
2.

6
5

63
.2

0
2
.9

2
5
9.

8
5

3.
35

46
.9

6
4.

8
9

7
0
.0

0
3.

7
2

6
9.

63
3.

80

n
i

=
9

53
.0

3
5.

0
4

57
.8

3
4.

1
0

66
.6

2
5
.0

8
6
7.

3
8

5.
04

52
.8

7
5.

0
2

7
5
.0

4
5.

4
2

7
4.

26
5.

18

n
i

=
12

54
.2

5
5.

7
6

58
.1

8
5.

9
0

67
.7

7
6
.5

5
7
0.

9
2

6.
08

54
.1

5
5.

6
7

7
7
.2

3
4.

4
5

7
5.

78
4.

96

L
B

P

n
i

=
3

56
.9

7
10

.9
4

71
.0

7
7.

6
6

77
.0

5
6
.4

7
7
3.

5
5

7.
73

56
.9

7
10

.9
7

7
7
.0

9
6.

3
5

7
7.

07
6.

44

n
i

=
6

72
.2

2
4.

7
2

86
.9

0
2.

1
2

88
.7

8
1
.7

1
8
6.

7
0

2.
11

72
.1

9
4.

7
7

8
9.

39
1.

6
3

8
9
.6

3
1.

66

n
i

=
9

76
.2

8
2.

8
8

86
.9

4
1.

9
4

88
.2

6
1
.7

3
8
7.

7
0

1.
57

76
.3

1
2.

8
8

8
9
.4

1
1.

2
0

8
9.

21
1.

37

n
i

=
12

75
.1

8
2.

6
7

83
.7

3
1.

9
6

85
.8

3
1
.1

8
8
5.

8
0

1.
28

75
.2

0
2.

8
2

8
7
.0

8
0.

6
7

8
6.

83
0.

95

L
T

P

n
i

=
3

49
.5

7
11

.9
8

73
.8

0
6.

2
1

7
9
.2

9
5
.9

9
7
6.

2
3

6.
76

49
.1

0
11

.9
6

7
8.

20
6.

2
6

7
9.

25
5.

94

n
i

=
6

65
.7

5
5.

3
0

89
.1

3
1.

8
9

90
.1

8
1
.8

0
8
8.

9
6

1.
95

65
.4

2
5.

4
6

8
9.

98
1.

6
6

9
0
.2

8
1.

76

n
i

=
9

70
.6

6
4.

3
7

88
.9

4
2.

1
1

89
.6

9
1
.6

3
8
9.

3
6

1.
84

70
.4

6
4.

2
9

8
9
.8

6
1.

5
5

8
9.

68
1.

89

n
i

=
12

69
.7

5
5.

4
9

86
.0

5
2.

0
7

86
.7

3
1
.3

9
8
6.

4
7

1.
51

69
.7

3
5.

1
5

8
7
.0

7
1.

1
9

8
6.

77
1.

51

D
C

T

n
i

=
3

30
.3

2
8.

0
4

32
.0

8
6.

0
9

42
.8

2
5
.1

9
3
3.

6
3

5.
49

30
.3

1
8.

0
7

4
2.

34
6.

1
2

4
4
.0

0
6.

22

n
i

=
6

42
.1

3
5.

2
9

50
.3

1
3.

1
4

58
.1

3
2
.5

3
5
1.

7
2

3.
66

42
.1

4
5.

3
0

6
1.

18
2.

9
9

6
2
.5

3
3.

49

n
i

=
9

49
.0

7
4.

3
0

56
.3

0
3.

9
3

63
.9

7
4
.5

7
6
1.

8
4

4.
59

49
.0

3
4.

2
7

6
9.

19
5.

1
0

6
9
.7

8
4.

78

n
i

=
12

51
.7

5
4.

1
0

56
.1

3
6.

0
0

64
.9

5
5
.7

8
6
6.

0
5

5.
37

51
.8

0
4.

1
5

7
2
.3

7
5.

6
8

7
2.

20
5.

30

G
a
b
o
r

n
i

=
3

45
.3

5
9.

6
5

65
.9

9
7.

0
6

73
.1

1
6
.0

6
6
5.

8
9

7.
26

45
.0

9
9.

8
0

7
1.

97
6.

2
3

7
3
.1

7
6.

19

n
i

=
6

58
.9

9
5.

5
1

83
.3

3
3.

4
1

85
.9

1
3
.4

3
8
3.

9
6

3.
31

58
.7

7
5.

9
2

8
6.

45
2.

9
5

8
6
.7

4
3.

16

n
i

=
9

64
.0

7
5.

1
7

84
.0

6
2.

8
6

86
.4

8
2
.5

2
8
5.

9
4

2.
52

64
.2

2
5.

2
3

8
7.

74
2.

1
3

8
7
.8

2
1.

88

n
i

=
12

64
.4

7
5.

4
0

81
.2

8
3.

8
3

84
.5

8
2
.2

7
8
4.

8
8

1.
88

64
.8

2
5.

0
4

8
5
.6

5
1.

4
2

8
5.

63
1.

57

22



YAVUZ et al./Turk J Elec Eng & Comp Sci

In this case, there are 20 rounds of recognition experiments. By looking at the results in terms of the

embedding methods, kernel LDA gives 10, kernel DCV gives 9, and DCV gives 1 maximum recognition rates

over 20 rounds. LDA and Laplacianfaces did not result in a maximum recognition rate in any turn, but they

generally resulted in approximate values to the leading methods. However, PCA among the linear methods and

kernel PCA among the kernel methods generally give the worst recognition rates.

From the feature aspect, considering the maximum recognition rate giving embeddings, LTP serves

better features for ni = 3, 6, 9 cases and LBP, with just a slightly higher recognition rate than LTP, serves

better features for the ni = 12 case. Gabor features follow the leading features, and the gray-level and DCT

features give worse values than the others.

3.4.4. Experiments on the AR face database with automatically aligned face images

Similar recognition experiments were performed on the AR face database using the automatically aligned face

images. For this database, the correct face detection rate is 91.38%, which is lower than that of the ESOGU

database. The AR face database includes more poses with lighting differences and extra occlusions than the

ESOGU database, and misdetections generally occur in the occluded images under differently lit conditions.

Some examples of the automatically aligned faces of the AR database are given in Figure 10.

Figure 10. Some face images from the AR database in which the face region is aligned automatically using procedure

2.

Recognition results on the automatically aligned faces of the AR database are given in Table 4. Similar

to the previous case, the face images that were not detected are used in the test phase and accepted as the

wrong recognition as a result. In this database, there are at most 6 misdetections for a person at the end, so

we used ni = 5, 9, 13, 17 samples in the training and the remaining 9, 13, 17, 21 respective samples in the test.

There are 20 rounds of recognition experiments in this case. By looking at the recognition results in

terms of the embedding methods, we see that the kernel DCV method outperforms the others in 18 rounds.

LDA in one round and LDA and DCV in another give the maximum recognition rate. When we consider the

feature extraction methods, the LTP features reach the maximum recognition rates in all turns. The LBP,

Gabor, gray-level, and DCT results follow those of the LTP.

We can easily notice one more fact, which is that the recognition rates in the AR face database drastically

decrease when the automatic alignment procedure is used. The first reason for this conclusion is the high
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detection error due to lighting differences. The second reason is the automatic annotation error, i.e., an improper

determination of the center of the eye coordinates in automatic algorithms. One more reason may be the high

number of occluded images in the database. When combined with the detection and annotation errors, occluded

images of people may be hard to distinguish. The best result was accomplished as 78% using the LTP features

and kernel DCV embedding with ni = 9 for the automatically aligned faces. However, when used with the

automatically aligned faces, it was around 98%, which clearly points to automatic annotation errors.

3.5. Discussion
In this study, we conducted face recognition experiments to compare the recognition performances of the different

types of features and embedding methods for face recognition. We used two databases, and for both of them

we used two types of face images: manually aligned faces and automatically aligned faces.

In the experiments with the ESOGU face database with manually aligned images, the kernel DCV and

the kernel FLDA are the leading embedding methods and LBP features are the leading feature types. For the

AR face database with manually aligned images, the kernel DCV is better among the embeddings and the LTP

features are better among the feature types. For the automatically aligned faces, we get similar conclusions in

that the LBP and LTP features are better than the other features, whereas kernel DCV and kernel LDA are

better than the other embedding methods in general.

The ordering of the features can be given as follows: LTP and LBP features generally perform with

maximum recognition rates, Gabor features follow them with similar results, and the DCT and gray-level

features are generally at the end of the list. Although LBP features are mostly used in the area of texture

classification, we have seen that they also perform well in face recognition. The computational cost of LBP and

LTP features is not high, and they also result in a lower-dimensional feature vector in contrast to the gray-level

values. Gabor features give good recognition results as well, but they require a costly computation that could

slow down the recognition procedure, and the resultant Gabor feature has a generally higher dimension than the

gray-level features. Usage of DCT can improve the recognition performance compared to the gray-level values

in some cases, but they generally give similar results. From this spot, we can separate LBP and LTP features

as better feature types from the others by having a lower dimensionality and higher recognition results.

From the embedding methods side, the kernel DCV and the kernel LDA generally give higher recognition

rates than the Laplacianfaces and the kernel PCA among the kernel methods. For the properly aligned images,

they can give approximately fully correct recognition when a large number of images are used in the training.

Similarly, the linear versions of these two methods, LDA and DCV, give better recognition rates among the linear

methods. We should draw attention to the fact that the PCA and the kernel PCA give the worst recognition

rates in all cases, which is not a surprising conclusion at all. To clarify, even though the LDA- and DCV-based

methods give approximate recognition results, the DCV is one step further from the LDA in giving higher

recognition rates. The linear DCV is also a computationally efficient embedding method in which there is no

additional parameter that needs to be tuned. It guarantees full recognition accuracy for the training samples,

whereas the other embeddings may or may not result in full recognition accuracy in the training samples.

Recognition rates due to automatically aligned faces are generally lower than the recognition rates of the

manually aligned face images. There are 2 basic reasons for this situation: the detection and the annotation

errors. When a human annotates the face and eye coordinates, he generally makes a negligible amount of error,

but when the face and the eye coordinates are determined automatically with the computer algorithms, they

may result in large errors that affect the consequence. Even though we used up-to-date detection techniques in

this study, we have seen that the recognition rates decrease considerably when we try the automatic alignment

procedure.

25



YAVUZ et al./Turk J Elec Eng & Comp Sci

The automatic alignment procedure of the faces can be improved by adopting extra image processing

techniques and retraining the detectors with some samples from the databases. We used the detectors with

their intrinsically trained parameters to be objective in this study. However, we encountered misdetections,

especially in the images including illumination differences. This problem can be solved by adding samples

including such face images and retraining the detector system. Proper localization of the eyes can also be

achieved by introducing an extra image processing procedure to minimize the error, but this would consume

extra time.

The experiments also demonstrate that the proper alignment of the face improves the performance of the

system in general. For future considerations, to be used in a real-time face recognition system, the alignment

procedure should be taken into account to achieve good recognition performance. When the alignment is realized

with zero or a very small number of errors, the recognition results would be at high levels.

4. Conclusion

The face recognition problem is a difficult one because it includes many complications, such as the variety

of the head or mimic poses, illumination differences, shape, makeup, and occlusion effects. Face recognition

methods have two steps in general: the feature extraction and the classification. In this paper, we provided an

extensive comparison of the state-of-the-art embedding methods used in classification with some extra feature

extraction techniques in face representation. In order to test the performances, we created a new face database

and conducted face recognition experiments using our database and another well-known AR face database. The

experimental results demonstrated that the adaptation of some features other than the gray-level values can

result in better recognition rates. In general, LBP and LTP features are better among the feature types. The

LBP and LTP features are first used in the texture classification, but in this study we have seen that they also

performed well in the face recognition area. From perspective of embedding methods, kernel methods generally

improve recognition performance. Among them, the kernel DCV is the leading embedding method, followed

by the kernel LDA with close results. The Laplacianfaces also give approximate results, but the kernel PCA

does not give comparative results to those of the others. Similar ordering is experienced in linear embedding

methods as well; the DCV gives better results than the LDA in general, but they both give close recognition

rates. However, the PCA gives the worst recognition rates of all.

In addition to the feature types and the embedding methods, we have also demonstrated in this study

that the proper alignment of the faces has an important influence on the performance of the recognition system.

Manually aligned faces result in better recognition rates than the automatically aligned faces do. This highlights

the importance of an error-free alignment of faces, implying that researchers should put an emphasis on the

face alignment procedure, which is generally neglected in a majority of the studies. As a future study, the

improvement of automatic face alignment procedures can be considered to be used with a full automatic

recognition system.

Acknowledgment
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